TDA6500; TDA6501
 5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Rev. 02 - 14 June 2005
Product data sheet

1. General description

TDA6500TT and TDA6501TT are programmable 2-mixer, 3-oscillator and synthesizer MOPLLs intended for pure 3-band tuner concepts.

The device includes two double balanced mixers for the low and mid/high bands and three oscillators for the low, mid and high bands, respectively. Other functions are an IF amplifier, a wide-band AGC detector and a PLL synthesizer. Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling.

The device can be controlled according to the $\mathrm{I}^{2} \mathrm{C}$-bus format.

2. Features

- Single-chip, 5 V mixer/oscillator and synthesizer for TV and VCR tuners
- ${ }^{2} \mathrm{C}$-bus protocol compatible with 3.3 V and 5 V microcontrollers:
- Address + 6 data bytes transmission
- Address +1 status byte (${ }^{2} \mathrm{C}$-bus read mode)
- Four independent $\mathrm{I}^{2} \mathrm{C}$-bus addresses
- Two PMOS open-drain ports with 5 mA source capability to switch high band and FM sound trap (P2 and P3)
- One PMOS open-drain port P1 with 20 mA source capability to switch the mid band
- One PMOS open-drain port P0 with 10 mA source capability to switch the low band
- Five step, 3-bit Analog-to-Digital Converter (ADC) and NPN open-collector general purpose port P6 with 5 mA sinking capability
- NPN open-collector general purpose port P4 with 5 mA sinking capability
- Internal AGC flag
- In-lock flag

■ 33 V tuning voltage output

- 15-bit programmable divider
- Programmable reference divider ratio: 64, 80 or 128

■ Programmable charge pump current: $60 \mu \mathrm{~A}$ or $280 \mu \mathrm{~A}$

- Varicap drive disable
- Balanced mixer with a common emitter input for the low band (single input)
- Balanced mixer with a common base input for the mid and high bands (balanced input)
- 2-pin asymmetrical oscillator for the low band
- 2-pin asymmetrical oscillator for the mid band
- 4-pin symmetrical oscillator for the high band
- IF preamplifier with asymmetrical 75Ω output impedance to drive a SAW filter ($500 \Omega / 40 \mathrm{pF}$)
- Wide-band AGC detector for internal tuner AGC:
- Five programmable take-over points
- Two programmable time constants

3. Applications

TV and VCR tuners

- Specially suited for switched concepts, all systems
- Specially suited for strong off-air reception

4. Ordering information

Table 1: Ordering information

Type number	Package		
	Name	Description	Version
TDA6500TT	TSSOP32	plastic thin shrink small outline package; 32 leads; body width 6.1 mm; lead pitch 0.65 mm	
TDA6501TT		SOT487-1	

5. Block diagram

Fig 1. Block diagram

6. Pinning information

6.1 Pinning

Fig 2. Pin configuration for TDA6500TT

Fig 3. Pin configuration for TDA6501TT

6.2 Pin description

Table 2: Pin description

Symbol	Pin		Description
	TDA6500TT	TDA6501TT	
AGC	25	8	AGC output
AS	21	12	address selection input
CP	16	17	charge pump output
HOSCIN1	6	27	high band oscillator input 1
HOSCIN2	9	24	high band oscillator input 2
HOSCOUT1	8	25	high band oscillator output 1
HOSCOUT2	7	26	high band oscillator output 2
IFFIL1	27	6	IF filter output 1
IFFIL2	28	5	IF filter output 2
IFGND	11	22	IF ground
IFOUT	12	21	IF output
LBIN	30	3	low band RF input
LOSCIN	1	32	low band oscillator input
LOSCOUT	2	31	low band oscillator output
MHBIN1	31	2	mid and high band RF input 1
MHBIN2	32	1	mid and high band RF input 2
MOSCIN	5	28	mid band oscillator input

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 2: Pin description ...continued

Symbol	Pin		Description
	TDA6500TT	TDA6501TT	
MOSCOUT	4	29	mid band oscillator output
OSCGND	3	30	oscillator ground
P0	23	10	PMOS open-drain port 0 to select low band operation
P1	24	9	PMOS open-drain port 1 to select mid band operation
P2	26	7	PMOS open-drain general purpose port 2
P3	22	11	PMOS open-drain general purpose port 3
P4	17	16	NPN open-collector general purpose port 4
P6/ADC	18	15	NPN open-collector general purpose port 6 or ADC input
PLLGND	13	20	digital ground
RFGND	29	4	RF ground
SCL	20	13	serial clock input
SDA	19	14	serial data input and output
VCC	10	23	supply voltage
VT	15	18	tuning voltage output
XTAL	14	19	crystal oscillator input

7. Functional description

7.1 General

TDA6500TT and TDA6501TT are programmable 2-mixer, 3-oscillator and synthesizer MOPLLs intended for pure 3-band tuner concepts.

The device includes two double balanced mixers for the low and mid/high bands and three oscillators for the low, mid and high bands respectively. The band limits for PAL tuners are shown in Table 3.

Table 3: Low, mid and high band limits

Band	Input $\mathbf{f}_{\text {RFpix }}(\mathbf{M H z})$			Oscillator $\mathbf{f}_{\text {osc }}(\mathbf{M H z})$	
	Min	Max	Min	Max	
Low	45.25	154.25	84.15	193.15	
Mid	161.25	439.25	200.15	478.15	
High	455.25	855.25	494.15	894.15	

Other functions are an IF amplifier, a wide-band AGC detector and a PLL synthesizer.
Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling.

Bit P0 enables Port P0 and the low band mixer and oscillator (see Table 4). Bit P1 enables Port P1, the mid/high band mixer and the mid band oscillator. Bit P2 enables Port P2 and bit P3 enables Port P3. When Ports P0 and P1 are disabled, the mid/high band mixer and the high band oscillator are enabled.

Table 4: Mixer and oscillator band selection

Bit			Mixer band			Oscillator band		
P0	P1	low	mid	high	low	mid	high	
1	0	x			x			
0	1		x	x		x		
0	0		x	x			x	

The AGC detector provides information about the IF amplifier level. Five AGC take-over points are available by software. Two programmable AGC time constants are available for search tuning and normal tuner operation. The synthesizer consists of a 15-bit programmable divider, a crystal oscillator and its programmable reference divider and a phase/frequency detector combined with a charge pump, which drives the tuning amplifier including 33 V output.

Depending on the reference divider ratio (64,80 or 128) the phase comparator operates at $62.50 \mathrm{kHz}, 50.00 \mathrm{kHz}$ or 31.25 kHz with a 4 MHz crystal.

The device can be controlled according to the $\mathrm{I}^{2} \mathrm{C}$-bus format. The lock detector bit FL is set to logic 1 when the loop is locked. The AGC bit is set to logic 1 when the internal AGC is active (level below 3 V). These two flags are read on the SDA line (status byte) during a read operation (see Table 11).

The ADC input is available on pin P6/ADC for digital AFC control. The ADC code is read during a read operation (see Table 11). In test mode, pin P6/ADC is used as a test output for $1 / 2 f_{\text {ref }}$ and $1 / 2 f_{\text {div }}$ (see Table 8).

A minimum of seven bytes, including address byte, is required to address the device, select the VCO frequency, program the ports, set the charge pump current, set the reference divider ratio, select the AGC take-over point and select the AGC time constant. The device has four independent $\mathrm{I}^{2} \mathrm{C}$-bus addresses which can be selected by applying a specific voltage on input AS (see Table 7).

7.2 Device control

The device is controlled via the $\mathrm{I}^{2} \mathrm{C}$-bus. For programming, a module address of 7 bits and the R / \bar{W} bit for selecting the read or the write mode is required.

7.2.1 Write mode

Data bytes can be sent to the device after the address transmission (first byte). Seven data bytes are needed to fully program the device. The bus transceiver has an auto-increment facility, which permits the programming of the device within one single transmission (address + 6 data bytes).

The device can also be partially programmed providing that the first data byte following the address is the first divider byte DB1 or the control byte CB. The data bytes are defined in Table 5 and Table 6.

The first bit of the first data byte indicates whether frequency data (first bit $=0$) or control, port and auxiliary data (first bit $=1$) will follow. Until an $I^{2} \mathrm{C}$-bus STOP command is sent by the controller, additional data bytes can be entered without the need to re-address the device. The frequency register is loaded with data from byte DB2 after the 8th SCL clock

TDA6500; TDA6501

pulse, the control register is loaded with data from byte CB after the 8th SCL clock pulse, the band switch register is loaded with data of byte BB after the 8th SCL clock pulse and the auxiliary register is loaded with data of byte AB after the 8th SCL clock pulse.

To program the AGC take-over point setting and the AGC current to a different value than the default value, an additional byte, the auxiliary byte, has to be sent. To this end, the auxiliary byte is preceded by a control byte with the test bits T2, T1 and T0 set to logic 011 (see Table 8).

Table 5: $\quad \mathrm{I}^{2} \mathrm{C}$-bus data format for write mode

Name	Byte	Bit								Ack
		MSB							LSB	
Address byte	ADB	1	1	0	0	0	MA1	MAO	$\mathrm{R} / \overline{\mathrm{W}}=0$	A
Divider byte 1	DB1	0	N14	N13	N12	N11	N10	N9	N8	A
Divider byte 2	DB2	N7	N6	N5	N4	N3	N2	N1	N0	A
Control byte	CB	1	CP	T2	T1	T0	RSA	RSB	OS	A
Band switch byte	BB	0	P6	0	P4	P3	P2	P1	P0	A
Auxiliary byte [1]	AB	ATC	AL2	AL1	ALO	0	0	0	0	A

[1] Auxiliary byte AB replaces band switch byte BB when bit $\mathrm{T} 2=0, \mathrm{~T} 1=1$ and $\mathrm{T} 0=1$.

Table 6: Description of bits shown in Table 5

Symbol	Description
A	acknowledge
MA1 and MA0	programmable address bits; see Table 7
R/W	logic 0 for write mode
N14 to N0	programmable divider bits; $N=\left(N 14 \times 2^{14}\right)+\left(N 13 \times 2^{13}\right)+\ldots+\left(N 1 \times 2^{1}\right)+N 0$
CP	charge pump current
	$\mathrm{CP}=0$: the charge pump current is $60 \mu \mathrm{~A}$
	$\mathrm{CP}=1$: the charge pump current is $280 \mu \mathrm{~A}$ (default)
T2, T1 and T0	test bits; see Table 8
RSA and RSB	reference divider ratio select bits; see Table 9
OS	tuning amplifier control bit
	$\mathrm{OS}=0$: normal operation; tuning voltage is on
	OS = 1: tuning voltage is off; high-impedance state (default)
P 6 and P4	NPN port control bits
	$\mathrm{Pn}=0$: port n is off; high-impedance state (default)
	$\mathrm{Pn}=1$: buffer n is on; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CE} \text { (sat) }}$
P3 to P0	PMOS port control bits
	$\mathrm{Pn}=0$: port n is off; high-impedance state (default)
	$\mathrm{Pn}=1$: buffer n is on; $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DS} \text { (sat) }}$
ATC	AGC time constant
	ATC $=0: \mathrm{I}_{\mathrm{AGC}}=220 \mathrm{nA} ; \Delta \mathrm{t}=2 \mathrm{~s}$ with $\mathrm{C}=160 \mathrm{nF}$ (default)
	ATC $=1: \mathrm{I}_{\text {AGC }}=9 \mu \mathrm{~A} ; \Delta \mathrm{t}=50 \mathrm{~ms}$ with $\mathrm{C}=160 \mathrm{nF}$
AL2, AL1 and ALO	AGC take-over point bits; see Table 10

TDA6500; TDA6501

The module address contains programmable address bits (MA1 and MA0) which offer the possibility of having up to 4 synthesizers in one system by applying a specific voltage on the AS input. Table 7 gives the relationship between the input voltage applied to the AS input and bits MA1 and MA0.

Table 7: $\quad \mathrm{I}^{2} \mathrm{C}$-bus address selection

Voltage applied to pin AS	MA1	MAO
$0 \mathrm{~V}^{\text {to } 0.1 \mathrm{~V}_{C C}}$	0	0
$0.2 \mathrm{~V}_{C C}$ to $0.3 \mathrm{~V}_{C C}$ or open	0	1
$0.4 \mathrm{~V}_{C C}$ to $0.6 \mathrm{~V}_{C C}$	1	0
$0.9 \mathrm{~V}_{C C}$ to $\mathrm{V}_{C C}$	1	1

Table 8: Test modes

T2	T1	T0	Test modes
0	0	0	normal mode
0	0	1	normal mode; default mode at power-on reset
0	1	0	charge pump is off control byte is followed by auxiliary byte AB instead of the band switch byte BB
0	1	1	charge pump is sinking current
1	1	0	charge pump is sourcing current
1	1	1	$1 / 2 f_{\text {ref }}$ is available on pin P6/ADC $[1]$
1	0	0	$1 / 2 \mathrm{f}_{\text {div }}$ is available on pin P6/ADC $[1]$
1	0	1	

[1] The ADC input cannot be used when these test modes are active; see Section 7.2.2 for more information.

Table 9: Reference divider ratio select

RSA	RSB	Reference divider ratio
0	0	80
0	1	128
1	1	64
1	0	forbidden

Table 10: AGC take-over point

AL2	AL1	ALO	Asymmetrical mode
0	0	0	$115 \mathrm{~dB} \mu \mathrm{~V}$
0	0	1	$115 \mathrm{~dB} \mu \mathrm{~V}$
0	1	0	$112 \mathrm{~dB} \mu \mathrm{~V}$; default mode at power-on reset
0	1	1	$109 \mathrm{~dB} \mu \mathrm{~V}$
1	0	0	$106 \mathrm{~dB} \mu \mathrm{~V}$
1	0	1	$103 \mathrm{~dB} \mu \mathrm{~V}$
1	1	0	$\mathrm{I}_{\mathrm{AGC}}=0 \mathrm{~mA} ;$ external AGC[1]
1	1	1	$3.5 \mathrm{~V} ;$ disabled $\underline{[1]}$

[1] The AGC detector is disabled. Both the sinking and sourcing currents from the IC are disabled. The AGC output goes into a high-impedance state and an external AGC source can be connected in parallel.
[2] The AGC detector is disabled and the fast mode current source is enabled.

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

7.2.2 Read mode

Data can be read from the device by setting the R / \bar{W} bit to logic 1 . The data read format is shown in Table 11. After the slave address has been recognized, the device generates an acknowledge pulse and the first data byte (status byte) is transferred on the SDA line with the MSB first. Data is valid on the SDA line during a HIGH-level of the SCL clock signal.

A second data byte can be read from the device if the microcontroller generates an acknowledge on the SDA line (master acknowledge). End of transmission will occur if no master acknowledge occurs. The device will then release the data line to allow the microcontroller to generate a STOP condition.

The POR flag is set to logic 1 at power-on. The flag is reset when an end-of-data is detected by the device (end of a read sequence).

Control of the loop is made possible with the in-lock flag (FL) which indicates when the loop is locked ($F L=1$).

The internal AGC status is available from the AGC bit. AGC = 1 indicates when the selected take-over point is reached.

A built-in ADC is available on the P6/ADC pin. The ADC can be used to apply AFC information to the microcontroller from the IF section of the tuner. The relationship between the voltage applied to the ADC input and the A2, A1 and A0 bits is given in Table 13.

Table 11: Read data format

Name	Byte	Bit								Ack
		MSB [1]							LSB	
Address byte	ADB	1	1	0	0	0	MA1	MAO	$\mathrm{R} / \bar{W}=1$	A
Status byte	SB	POR	FL	1	1	AGC	A2	A1	A0	-

[1] MSB is transmitted first.

Table 12: Description of bits shown in Table 11

Symbol	Description
A	acknowledge
MA1 and MA0	programmable address bits; see Table 7
R/W	logic 1 for read mode
POR	power-on reset flag
	POR $=0$, normal operation
	$\mathrm{POR}=1$, power-on state
FL	in-lock flag
	FL = 0, not locked
	FL = 1, the PLL is locked
AGC	internal AGC flag
	AGC $=0$, internal AGC not active
	AGC $=1$, internal AGC is active; level below 3 V
A2, A1 and A0	digital output of the 5-level ADC; see Table 13

Table 13: ADC levels

Voltage applied to ADC input [1]	A2	A1	A0
$0.60 \mathrm{~V}_{C C}$ to V_{CC}	1	0	0
$0.45 \mathrm{~V}_{\mathrm{CC}}$ to $0.60 \mathrm{~V}_{\mathrm{CC}}$	0	1	1
$0.30 \mathrm{~V}_{\mathrm{CC}}$ to $0.45 \mathrm{~V}_{\mathrm{CC}}$	0	1	0
$0.15 \mathrm{~V}_{\mathrm{CC}}$ to $0.30 \mathrm{~V}_{\mathrm{CC}}$	0	0	1
0 V to $0.15 \mathrm{~V}_{\mathrm{CC}}$	0	0	0

[1] Accuracy is $\pm 0.03 \mathrm{~V}$ cc.

7.2.3 Power-on reset

The power-on detection threshold voltage is set to $\mathrm{V}_{\mathrm{POR}}=3.5 \mathrm{~V}$ at room temperature. Below this threshold, the device is reset to the power-on state.

In the power-on state, the charge pump current is set to $280 \mu \mathrm{~A}$, the tuning voltage output is disabled, the test bits $\mathrm{T} 2=0, \mathrm{~T} 1=0$ and $\mathrm{T} 0=1$, the AGC take-over point is set to $112 \mathrm{~dB} \mu \mathrm{~V}$ and the AGC current is set to the slow mode. The high band is selected by default.

Table 14: Default bits at power-on reset

| Name | Byte | Bit | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | MSB | | | | | | | |
| Address byte | ADB | 1 | 1 | 0 | 0 | 0 | MA1 | MA0 | X |
| Divider byte 1 | DB1 | 0 | X | X | X | X | X | X | X |
| Divider byte 2 | DB2 | X | X | X | X | X | X | X | X |
| Control byte | CB | 1 | 1 | 0 | 0 | 1 | X | X | 1 |
| Band switch byte | BB | - | 0 | - | 0 | 0 | 0 | 0 | 0 |
| Auxiliary byte | AB | 0 | 0 | 1 | 0 | - | - | - | - |

8. Internal circuitry

Table 15: Internal circuits

Symbol	Pin		Average DC voltage versus band selection			Equivalent circuit [1]
	TDA6500TT	TDA6501TT	Low	Mid	High	
LOSCIN	1	32	1.7	1.4	1.4	
LOSCOUT	2	31	2.9	3.5	3.5	
OSCGND	3	30	-	-	-	-
MOSCOUT	4	29	3.5	3.02	3.5	
MOSCIN	5	28	1.4	1.7	1.4	
HOSCIN1	6	27	2.2	2.2	1.8	
HOSCOUT2	7	26	5	5	2.5	
HOSCOUT1	8	25	5	5	2.5	
HOSCIN2	9	24	2.2	2.2	1.8	
$V_{C C}$	10	23	5.0	5.0	5.0	-
IFGND	11	22	-	-	-	
IFOUT	12	21	2.1	2.1	2.1	

Table 15: Internal circuits ...continued

Symbol	Pin		Average DC voltage versus band selection			Equivalent circuit ${ }^{[1]}$
	TDA6500TT	TDA6501TT	Low	Mid	High	
PLLGND	13	20	-	-	-	
XTAL	14	19	0.7	0.7	0.7	
VT	15	18	V_{VT}	V_{VT}	V_{VT}	
CP	16	17	1.0	1.0	1.0	
P4	17	16	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ or High Z	$V_{C E(\text { sat })}$ or High Z	$V_{C E(s a t)}$ or High Z	
P6/ADC	18	15	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ or High Z	$V_{C E(\text { sat })}$ or High Z	$V_{C E}$ (sat) or High Z	(15)

Table 15: Internal circuits ...continued

Symbol	Pin		Average DC voltage versus band selection			Equivalent circuit [1]
	TDA6500TT	TDA6501TT	Low	Mid	High	
SDA	19	14	n.a.	n.a.	n.a.	
SCL	20	13	n.a.	n.a.	n.a.	(13) 2 fce234
AS	21	12	1.25	1.25	1.25	(12) 21
P3	22	11	High Z or $V_{C C}-V_{D S}$	High Z or $V_{C C}-V_{D S}$	High Z or $V_{C C}-V_{D S}$	
P0	23	10	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{DS}}$	High Z	High Z	
P1	24	9	High Z	$V_{C C}-V_{D S}$	High Z	
AGC	25	8	0 V or 3.5 V	0 V or 3.5 V	0 V or 3.5 V	

Table 15: Internal circuits ...continued

Symbol	Pin		Average DC voltage versus band selection			Equivalent circuit [1]
	TDA6500TT	TDA6501TT	Low	Mid	High	
P 2	26	7	High Z or $V_{C C}-V_{D S}$	High Z or $V_{C C}-V_{D S}$	High Z or $V_{C C}-V_{D S}$	
IFFIL1	27	6	4.4	4.4	4.4	
IFFIL2	28	5	4.4	4.4	4.4	
RFGND	29	4	-	-	-	
LBIN	30	3	1.8	n.a.	n.a.	(3)
MHBIN1	31	2	n.a.	1.0	1.0	
MHBIN2	32	1	n.a.	1.0	1.0	(2)

[1] The pin numbers in parenthesis represent the TDA6501TT.

9. Limiting values

Table 16: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{C C}$	supply voltage		-0.3	+6	V
$\mathrm{V}_{\text {XTAL }}$	crystal input voltage		-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$V_{\text {PG/ADC }}$	NPN port input and output voltage		-0.3	$V_{C C}+0.3$	V
$\mathrm{I}_{\text {PG/ADC }}$	NPN port output current (open-collector)		0	10	mA
V_{VT}	tuning voltage output		-0.3	+35	V
$\mathrm{V}_{\text {CP }}$	charge pump output voltage		-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\mathrm{P} 4}$	NPN port output voltage (open-collector)		-0.3	$V_{C C}+0.3$	V
$\mathrm{I}_{\mathrm{P} 4}$	NPN port output current (open-collector)		0	10	mA
$\mathrm{V}_{\text {SDA }}$	serial data input/output voltage		-0.3	+6	V
$\mathrm{I}_{\text {SDA }}$	serial data output current		-1	+10	mA
$\mathrm{V}_{\text {SCL }}$	serial clock input voltage		-0.3	+6	V
$\mathrm{V}_{\text {AS }}$	address selection input voltage		-0.3	$V_{C C}+0.3$	V
$V_{\text {Pn }}$	PMOS port output voltage (open-drain)		-0.3	$V_{C C}+0.3$	V
lP_{1}	PMOS port output current (open-drain)		-25	0	mA
IPO_{0}	PMOS port output current (open-drain)		-15	0	mA
$\mathrm{IP} 2, ~^{\text {P }}$ 3	PMOS port output current (open-drain)		-10	0	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-20	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	150	${ }^{\circ} \mathrm{C}$

[1] Maximum ratings cannot be exceeded, not even momentarily without causing irreversible IC damage. Maximum ratings cannot be accumulated.

10. Thermal characteristics

Table 17: Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
SOT487EC3 package (TDA6500TT)				
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	in free air; one layer printed-circuit board, JEDEC standards	[1] 110	K/W
SOT487EC5 package (TDA6501TT)				
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	in free air; one layer printed-circuit board, JEDEC standards	[1] 115	K/W

[1] The thermal resistance is highly dependant on the printed-circuit board on which the package is mounted. The thermal resistance values are given only for customer's guidance.

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

11. Characteristics

Table 18: Supplies
$V_{C C}=5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supply						
$\mathrm{V}_{\text {CC }}$	supply voltage		4.5	5.0	5.5	V
ICC	supply current	all PNP ports off	-	74	94	mA
		one PNP port on; sourcing 20 mA	-	96	116	mA
		two PNP ports on; one port sourcing 20 mA ; one other port sourcing 5 mA		102	122	mA

Table 19: PLL
$V_{C C}=5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Functional range						
$\mathrm{V}_{\text {POR }}$	power-on reset supply voltage	for a voltage lower than $\mathrm{V}_{\mathrm{POR}}$, power-on reset is active	1.5	3.5	-	V
N	divider ratio	15-bit frequency word	64	-	32767	
$\mathrm{f}_{\text {XTAL }}$	crystal oscillator frequency	$\mathrm{R}_{\text {XTAL }}=25 \Omega$ to 300Ω	3.2	4.0	4.48	MHz
$\left\|Z_{\text {XTAL }}\right\|$	input impedance (absolute value)	$\mathrm{f}_{\text {XTAL }}=4 \mathrm{MHz}$	600	1200	-	Ω

PMOS ports: P0, P1, P2 and P3

lo	output leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{Pn}}=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{DS} \text { (PO)(sat) }}$	output saturation voltage	buffer P0 is on only; sourcing 10 mA	-	0.25	0.4	V
$V_{\text {DS(P1)(sat) }}$	output saturation voltage	buffer P1 is on only; sourcing 20 mA	-	0.25	0.4	V
$V_{D S(P 2)(\text { sat) }}$, $\mathrm{V}_{\mathrm{DS} \text { (P3)(sat) }}$	output saturation voltage	buffer P2 or P3 is on; sourcing 5 mA	-	0.25	0.4	V
NPN ports: P4 and P6						
Lo	output leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{Pn}}=6 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	output saturation voltage	buffer P4 or P6 is on; sinking 5 mA	-	0.25	0.4	V
ADC input						
V_{1}	ADC input voltage	see Table 13	0	-	V_{CC}	V
I_{H}	HIGH-level input current	ADC input $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{C C}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW-level input current	ADC input $\mathrm{V}_{\mathrm{i}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
AS input (address selection)						
$\mathrm{IIH}^{\text {H }}$	HIGH-level input current	AS input $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{CC}}$	-	-	10	$\mu \mathrm{A}$
I/L	LOW-level input current	AS input $\mathrm{V}_{\mathrm{i}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
SCL and SDA inputs						
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		0	-	1.5	V
V_{IH}	HIGH-level input voltage		2.3	-	5.5	V
$\mathrm{IIH}^{\text {H }}$	HIGH-level input current	$\mathrm{V}_{\text {BUS }}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {BUS }}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 19: PLL ...continued
$V_{C C}=5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
IIL	LOW-level input current	$\mathrm{V}_{\text {BUS }}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {BUS }}=0 \mathrm{~V} ; \mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$
SDA output						
ILO	leakage current	SDA output $\mathrm{V}_{0}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
V_{0}	output voltage	$\mathrm{l}_{\text {(sink) }}=3 \mathrm{~mA}$	-	-	0.4	V
Clock frequency						
$\mathrm{f}_{\mathrm{clk}}$	clock frequency		-	-	400	kHz
Charge pump output CP						
$\left\|I_{I H}\right\|$	HIGH-level input current (absolute value)	$C P=1$	-	280	-	$\mu \mathrm{A}$
$\left\|I_{\text {IL }}\right\|$	LOW-level input current (absolute value)	$C P=0$	-	60	-	$\mu \mathrm{A}$
LIO(off)	off-state leakage current	$\mathrm{T} 2=0 ; \mathrm{T} 1=1 ; \mathrm{T} 0=0$	-15	0	+15	nA
Tuning voltage output VT						
Lo(off)	off-state leakage current	$\mathrm{OS}=1 ; \mathrm{V}_{\mathrm{VT}}=33 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
V 。	output voltage when the loop is closed	$\begin{aligned} & \mathrm{OS}=0 ; \mathrm{T} 2=0 ; \mathrm{T} 1=0 ; \mathrm{T} 0=1 ; \\ & R_{L}=27 \mathrm{k} \Omega ; \mathrm{V}_{V T}=33 \mathrm{~V} \end{aligned}$	0.2	-	32.7	V

Table 20: Mixer
$V_{C C}=5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Low band mixer mode ($\mathrm{P} 0=1$ and $\mathrm{P} 1=0$); including IF amplifier						
f_{RF}	RF frequency	picture carrier	[1] 44.25	-	154.25	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$; see Figure 8	25.0	27.5	30	dB
		$\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; see Figure 8	25.0	27.5	30	dB
NF	noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$; see Figure 9 and 10	-	8.0	10.0	dB
$\mathrm{V}_{\mathrm{O} \text { (mod) }}$	output voltage causing 0.3 \% cross modulation in channel	$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$; see Figure 12	108	111	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; see Figure 12	108	111	-	$\mathrm{dB} \mu \mathrm{V}$
$V_{0 \text { (FM) }}$	output voltage causing 1.1 kHz incidental FM	$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$	[2] 108	111	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$	[2] 108	111	-	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{INT}_{\text {SO2 }}$	channel SO2 beat	$\mathrm{V}_{\text {RFpix }}=115 \mathrm{~dB} \mu \mathrm{~V}$ at IF output	[3] 57	60	-	dBc
V_{i}	input level without lock-out	see Figure 11	[4]	-	120	$\mathrm{dB} \mu \mathrm{V}$
gos	optimum source conductance for noise figure	$\mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}$	-	0.7	-	mS
		$\mathrm{f}_{\mathrm{RF}}=150 \mathrm{MHz}$	-	0.9	-	mS
gi_{i}	input conductance	$\mathrm{f}_{\mathrm{RF}}=44.25 \mathrm{MHz}$; see Figure 4	-	0.30	-	mS
		$\mathrm{f}_{\mathrm{RF}}=161.25 \mathrm{MHz}$; see Figure 4	-	0.33	-	mS
Ci_{i}	input capacitance	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=44.25 \text { to } 161.25 \mathrm{MHz} ; \\ & \text { see Figure } 4 \end{aligned}$	-	1.29	-	pF

High band mixer in mid band mode ($\mathrm{P} 0=0$ and $\mathrm{P} 1=1$); including IF amplifier
f_{RF} RF frequency \quad picture carrier \quad [1] $161.25-\quad 439.25 \mathrm{MHz}$

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 20: Mixer ...continued
$V_{C C}=5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; see Figure 13	35	38	41	dB
		$\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$; see Figure 13	35	38	41	dB
NF	noise figure (not corrected for image)	$\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; see Figure 14	-	6	8.0	dB
		$\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$; see Figure 14	-	6	8.0	dB
$\mathrm{V}_{\mathrm{o} \text { (mod) }}$	output voltage causing 0.3% cross modulation in channel	$\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; see Figure 15	108	111	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$; see Figure 15	108	111	-	$\mathrm{dB} \mu \mathrm{V}$
V_{o} (FM)	output voltage causing 1.1 kHz incidental FM	$\mathrm{f}_{\text {RF }}=157 \mathrm{MHz}$	[2] 108	111	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$	[2] 108	111		$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{V}_{\mathrm{f}(\mathrm{N}+5)-1}$	($\mathrm{N}+5$) - 1 MHz pulling	$\begin{aligned} & \mathrm{f}_{\mathrm{RFwanted}}=443 \mathrm{MHz} ; \mathrm{f}_{\mathrm{osc}}=481.9 \mathrm{MHz} ; \\ & \mathrm{f}_{\text {RFunwanted }}=482 \mathrm{MHz} \end{aligned}$	[5] 72	80	-	$\mathrm{dB} \mu \mathrm{V}$
Z_{i}	input impedance ($\mathrm{R}_{\mathrm{S}}+\mathrm{j} L_{s} \omega$)	R_{S} at $\mathrm{f}_{\mathrm{RF}}=157 \mathrm{MHz}$; see Figure 5	-	25	-	Ω
		R_{S} at $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$; see Figure 5	-	25	-	Ω
		$L_{\text {S }}$ at $f_{\text {RF }}=157 \mathrm{MHz}$; see Figure 5	-	13	-	nH
		$L_{\text {S }}$ at $f_{\text {RF }}=443 \mathrm{MHz}$; see $\underline{\text { Figure } 5}$	-	13	-	nH
V_{i}	input level without lock-out	see Figure 16	[4]	-	120	$\mathrm{dB} \mu \mathrm{V}$
High band mixer in high band mode ($\mathrm{P} 0=0$ and $\mathrm{P} 1=0$); including IF amplifier						
f_{RF}	RF frequency	picture carrier	[1] 455.25	-	855.25	MHz
G_{v}	voltage gain	$\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$; see Figure 13	35	38	41	dB
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$; see Figure 13	35	38	41	dB
NF	noise figure (not corrected for image)	$\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$; see Figure 14	-	6.0	8.0	dB
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$; see Figure 14	-	7.0	9.0	dB
$\mathrm{V}_{\mathrm{o} \text { (mod) }}$	output voltage causing 0.3% cross modulation in channel	$\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$; see Figure 15	108	111	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$; see Figure 15	108	111	-	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{V}_{\text {O(FM) }}$	output voltage causing 1.1 kHz incidental FM	$\mathrm{f}_{\text {RF }}=443 \mathrm{MHz}$	[2] 108	111	-	$\mathrm{dB} \mu \mathrm{V}$
		$\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$	[2] 108	111	-	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{V}_{\mathrm{f}(\mathrm{N}+5)-1}$	$(\mathrm{N}+5)-1 \mathrm{MHz}$ pulling	$\begin{aligned} & \mathrm{f}_{\text {RFwanted }}=863.25 \mathrm{MHz} ; \\ & \mathrm{f}_{\text {osc }}=902.15 \mathrm{MHz} ; \\ & \mathrm{f}_{\text {RFunwanted }}=902.25 \mathrm{MHz} \end{aligned}$	[5] 72	80	-	$\mathrm{dB} \mu \mathrm{V}$
Z_{i}	input impedance ($\left.\mathrm{R}_{\mathrm{S}}+\mathrm{j} L_{s} \omega\right)$	R_{S} at $\mathrm{f}_{\mathrm{RF}}=443 \mathrm{MHz}$; see Figure 5	-	25	-	Ω
		R_{S} at $\mathrm{f}_{\mathrm{RF}}=863.25 \mathrm{MHz}$; see Figure 5	-	23	-	Ω
		$L_{\text {S }}$ at $f_{\text {RF }}=443 \mathrm{MHz}$; see Figure 5	-	13	-	nH
		$L_{\text {S }}$ at $f_{\text {RF }}=863.25 \mathrm{MHz}$; see Figure 5	-	13	-	nH
V_{i}	input level without lock-out	see Figure 16	[4] -	-	120	$\mathrm{dB} \mu \mathrm{V}$

[1] The RF frequency range is defined by the oscillator frequency range and the Intermediate Frequency (IF).
[2] This is the level of the RF unwanted signal, 50% amplitude modulated with 1 kHz , that causes a 1.1 kHz FM modulation of the local oscillator and thus of the wanted signal; $\mathrm{V}_{\text {wanted }}=100 \mathrm{~dB} \mu \mathrm{~V} ; \mathrm{f}_{\text {unwanted }}=\mathrm{f}_{\text {wanted }}+5.5 \mathrm{MHz}$. The FM modulation is measured at the oscillator output with a peeking coil using a modulation analyzer with a peak-to-peak detector and a post detection filter of 300 Hz up to 3 kHz .
[3] Channel SO2 beat is the interfering product of $f_{\text {RFpix }}, f_{\mathrm{f}_{\mathrm{F}}}$ and $\mathrm{f}_{\text {osc }}$ of channel SO ; $\mathrm{f}_{\text {beat }}=37.35 \mathrm{MHz}$. The possible mechanisms are: $\mathrm{f}_{\text {osc }}-2 \times \mathrm{f}_{\text {IF }}$ or $2 \times \mathrm{f}_{\text {RFpix }}-\mathrm{f}_{\text {osc }}$. For the measurement $\mathrm{V}_{\mathrm{o} \text { (IFOUT) }}=\mathrm{V}_{\text {RFpix }}=115 \mathrm{~dB} \mu \mathrm{~V}$.
[4] The IF output signal stays stable within the range of the $f_{\text {ref }}$ step for a low level RF input up to $120 \mathrm{~dB} \mu \mathrm{~V}$. This should be verified for every channel in the band.
[5] $(N+5)-1 \mathrm{MHz}$ pulling is the input level of channel $N+5$, at frequency 1 MHz lower, causing FM sidebands 30 dB below the wanted carrier.

Fig 4. Input admittance $\left(\mathrm{S}_{11}\right)$ of the low band mixer (40 MHz to 140 MHz); $\mathrm{Y}_{\mathrm{o}}=\mathbf{2 0} \mathrm{mS}$

Fig 5. Input impedance (S_{11}) of the mid and high band mixer (160 MHz to 870 MHz); $Z_{0}=100 \Omega$

Table 21: Oscillator
$V_{C C}=5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
Low band oscillator							
$\mathrm{f}_{\text {osc }}$	oscillator frequency		[1]	84.15	-	193.15	MHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$	oscillator frequency shift with supply voltage	$\Delta \mathrm{V}_{\text {CC }}=5 \%$	[2]	-	20	70	kHz
		$\Delta V_{C C}=10 \%$	[2]	-	110	-	kHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{T})}$	oscillator frequency drift with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ with compensation	[3]	-	800	1100	kHz
$\Delta \mathrm{f}_{\text {osc }(t)}$	oscillator frequency switch-on drift	5 s to 15 min after switching on $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	[4]	-	500	700	kHz
$\Phi_{\text {osc }}$	phase noise, carrier-to-noise sideband	$\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range		84	87	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range		104	107	-	$\mathrm{dBc} / \mathrm{Hz}$
RSC_{p-p}	ripple susceptibility of V_{Cc} (peak-to-peak value)	$4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz		15	20	-	mV
Mid band oscillator							
$\mathrm{f}_{\text {osc }}$	oscillator frequency		[1]	200.15	-	478.15	MHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$	oscillator frequency shift with supply voltage	$\Delta \mathrm{V}_{\text {CC }}=5 \%$	[2]	-	20	70	kHz
		$\Delta V_{C C}=10 \%$	[2]	-	110	-	kHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{T})}$	oscillator frequency drift with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ with compensation	[3]	-	1000	1500	kHz
$\Delta \mathrm{f}_{\text {osc }(t)}$	oscillator frequency drift after switch-on	5 s to 15 min after switching on $V_{C C}=5 \mathrm{~V}$	[4]	-	500	700	kHz
$\Phi_{\text {osc }}$	phase noise, carrier-to-noise sideband	$\pm 10 \mathrm{kHz}$ frequency offset; worst case in the frequency range		84	87	-	$\mathrm{dBc} / \mathrm{Hz}$
		$\pm 100 \mathrm{kHz}$ frequency offset; worst case in the frequency range		104	107	-	$\mathrm{dBc} / \mathrm{Hz}$
RSC_{p-p}	ripple susceptibility of V_{CC} (peak-to-peak value)	$4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$; worst case in the frequency range; ripple frequency 500 kHz		15	20	-	mV

High band oscillator

$\mathrm{f}_{\text {osc }}$	oscillator frequency		[1]	494.15	-	894.15	MHz
$\Delta \mathrm{f}_{\text {osc }(\mathrm{V})}$	oscillator frequency shift with supply voltage	$\Delta \mathrm{V}_{\mathrm{CC}}=5 \%$	[2]	-	20	70	kHz
		$\Delta V_{C C}=10 \%$	[2]	-	300	-	kHz
$\Delta \mathrm{f}_{\text {osc (}{ }^{\text {(}} \text {) }}$	oscillator frequency drift with temperature	$\Delta \mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ with compensation	[3]	-	1100	1500	kHz
$\Delta \mathrm{f}_{\text {osc }(t)}$	oscillator frequency drift after switch-on	5 s to 15 min after switching on $V_{C C}=5 \mathrm{~V}$	[4]		600	900	kHz

Table 21: Oscillator ...continued
$V_{C C}=5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\Phi_{\text {osc }}$ | phase noise, carrier-to-noise
 sideband | $\pm 10 \mathrm{kHz}$ frequency offset; worst
 case in the frequency range | 84 | 87 | - | $\mathrm{dBc} / \mathrm{Hz}$ |
| | $\pm 100 \mathrm{kHz}$ frequency offset; worst
 case in the frequency range | 104 | 107 | - | $\mathrm{dBc} / \mathrm{Hz}$ | |
| $\mathrm{RSC}_{\text {p-p }}$ | ripple susceptibility of V_{CC}
 (peak-to-peak value) | $4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$; worst case
 in the frequency range; ripple
 frequency 500 kHz | $\frac{\text { [5] }}{} 15$ | 20 | - | mV |
| | | | | | | |

[1] Limits are related to the tank circuits used in Figure 7 for a PAL application. The choice of different external components adapts the measurement circuit to other frequency bands or NTSC applications.
[2] The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to $4.75 \mathrm{~V}(4.5 \mathrm{~V})$ or from $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to $5.25 \mathrm{~V}(5.5 \mathrm{~V})$. The oscillator is free running during this measurement.
[3] The frequency drift is defined as a change in oscillator frequency when the ambient temperature varies from $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ or from $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$. The oscillator is free running during this measurement.
[4] Switch-on drift is defined as the change in oscillator frequency between 5 s and 15 min after switch on. The oscillator is free running during this measurement.
[5] The supply ripple susceptibility is measured in the circuit according to Figure 7 using a spectrum analyzer connected to the IF output. An unmodulated RF signal is applied to the test board RF input. A sinewave signal with a frequency of 500 kHz is superimposed onto the supply voltage. The amplitude of this ripple signal is adjusted to bring the 500 kHz sidebands around the IF carrier to a level of -53.5 dB with respect to the carrier.

Table 22: IF amplifier
$V_{C C}=5 \mathrm{~V} ; T_{a m b}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
IF amplifier						
S_{22}	output reflection coefficient	magnitude; see Figure 6	-	38	-	dB
		phase; see Figure 6	-	0.36	-	deg
Z_{0}	output impedance ($\mathrm{R}_{S}+\mathrm{j} L_{s} \omega$)	R_{S} at 36.15 MHz	-	79	-	Ω
		C_{S} at 36.15 MHz	-	9	-	nF
		R_{S} at 43.5 MHz	-	80	-	Ω
		C_{S} at 43.5 MHz	-	3	-	nF
Rejection at the IF output						
$\mathrm{INT}_{\text {div }}$	level of divider interferences in the IF signal	worst case	[1] -	-	23	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{INT}_{\text {XTAL }}$	crystal oscillator interferences rejection	$\mathrm{V}_{\mathrm{IF}}=100 \mathrm{~dB} \mu \mathrm{~V}$; worst case in the frequency range	[2] 60	66	-	dBc
INTf ${ }_{\text {ref }}$	reference frequency rejection	$\mathrm{V}_{\mathrm{IF}}=100 \mathrm{~dB} \mu \mathrm{~V}$; worst case in the frequency range	[3] 60	66	-	dBc

[1] This is the level of divider interferences close to the IF. For example channel S3: $\mathrm{f}_{\mathrm{osc}}=158.15 \mathrm{MHz}, 1 / 4 \mathrm{f}_{\text {osc }}=39.5375 \mathrm{MHz}$. The LOSCIN input must be left open (i.e. not connected to any load or cable); the HOSCIN1 and HOSCIN2 inputs are connected to a hybrid.
[2] Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection has to be greater than 60 dB for an IF output signal of $100 \mathrm{~dB} \mu \mathrm{~V}$.
[3] The reference frequency rejection is the level of reference frequency sidebands (e.g. 62.5 kHz) related to the carrier. The rejection has to be greater than 60 dB for an IF output signal of $100 \mathrm{~dB} \mu \mathrm{~V}$.

Table 23: AGC output
$V_{C C}=5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; values are given for an IF amplifier with 500Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{AGC}_{\text {TOP }}$	AGC take-over point	$A L 2=0 ; A L 1=1 ; A L 0=0$	110.5	112	113.5	$\mathrm{dB} \mu \mathrm{V}$
$\mathrm{I}_{\text {source(fast) }}$	source current 1		8.0	9.5	11.0	$\mu \mathrm{A}$
$\mathrm{l}_{\text {source(slow) }}$	source current 2		210.0	245.0	280.0	nA
$\mathrm{I}_{\text {sink(peak) }}$	peak sink current to ground		80	100	120	$\mu \mathrm{A}$
$\mathrm{V}_{\text {max }}$	AGC maximum output voltage		3.45	3.5	4.0	V
$V_{\text {min }}$	AGC minimum output voltage		0	-	0.1	V
$\mathrm{V}_{\text {RF(Slip) }}$	RF voltage range to switch the AGC from active to not active mode		-	-	0.5	dB
$\mathrm{V}_{\mathrm{RM}(\mathrm{L})}$	AGC output voltage	AGC bit $=1$ or AGC active	0	-	2.9	V
$\mathrm{V}_{\text {RM(H) }}$	AGC output voltage	AGC bit $=0$ or AGC not active	3	3.5	4.0	V
ILO	AGC leakage current	$\begin{aligned} & \mathrm{AL2}=1 ; \mathrm{AL} 1=1 ; \mathrm{ALO}=0 ; \\ & 0 \mathrm{~V}<\mathrm{V}_{\mathrm{AGC}}<\mathrm{V}_{\mathrm{CC}} \end{aligned}$	-50	-	+50	nA
$\mathrm{V}_{\text {O(off) }}$	AGC output voltage with AGC disabled	$A L 2=1 ; A L 1=1 ; A L 0=1$	3.45	3.5	4.0	V

12. Application information

12.1 Tuning amplifier

The tuning amplifier is capable of driving the varicap voltage without an external transistor. The tuning voltage output must be connected to an external load of $27 \mathrm{k} \Omega$ which is connected to the tuning voltage supply rail. The loop filter design depends on the oscillator characteristics and the selected reference frequency.

12.2 Crystal oscillator

The crystal oscillator uses a 4 MHz crystal connected in series with an 18 pF capacitor thereby operating in the series resonance mode. Connecting the crystal to the ground is preferred, but it can also be connected to the supply voltage.

12.3 Examples of $\mathrm{I}^{2} \mathrm{C}$-bus control

Conditions:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{osc}}=100 \mathrm{MHz} \\
& \mathrm{P} 0=0 \text { (to switch on low band) } \\
& \mathrm{P} 3=\mathrm{on} \\
& \mathrm{I}_{\mathrm{CP}}=280 \mu \mathrm{~A} \\
& \mathrm{f}_{\text {step }}=62.5 \mathrm{kHz} \\
& \mathrm{~N}=1600 \\
& \mathrm{f}_{\mathrm{XTAL}}=4 \mathrm{MHz} \\
& \mathrm{I}_{\mathrm{AGC}}=245 \mathrm{nA}
\end{aligned}
$$

AGC take-over point $=$ set to $112 \mathrm{~dB} \mu \mathrm{~V}$ asymmetrical

12.3.1 Write sequence

Table 24 to $\underline{29}$ show various write sequences where:

$$
\begin{aligned}
& \mathrm{S}=\mathrm{START} \\
& \mathrm{~A}=\text { acknowledge } \\
& \mathrm{P}=\mathrm{STOP}
\end{aligned}
$$

For the complete sequence see Table 24 (sequence 1) or Table 25 (sequence 2).
Other $\mathrm{I}^{2} \mathrm{C}$-bus addresses may be selected by applying an appropriate voltage to pin AS.
Table 24: Complete sequence 1

Start	Address byte	Divider byte 1	Divider byte 2	Control byte	Band switch byte	Control byte	Auxiliary byte	Stop	
	C2	A	06	A	40	A	CE	A	09
S									

Table 25: Complete sequence 2

Start	Address byte		Control byte		Auxiliary byte		Control byte		Band switch byte		Divider byte 1		Divider byte 2		Stop
S	C2	A	DE	A	20	A	CE	A	09	A	06	A	40	A	P
93975015057												© Koninklike P Philips Electronics N.N. 2005. All rights reserved.			
Product data sheet			Rev. 02 - 14 June 2005												23 o

Table 26: Divider bytes only sequence

Start	Address byte	Divider byte 1	Divider byte 2		Stop
S	C2	A	06	A	40

Table 27: Control and band switch bytes only sequence

Start	Address byte	Control byte		Band switch byte	Stop
S	C2	A	CE	A	09

Table 28: Control and auxiliary bytes only sequence

Start	Address byte	Control byte		Auxiliary byte	
S	C2	A	DE	A	20

Table 29: Control byte only sequence

Start	Address byte		Control byte	
S	C2	A	DE	A

12.3.2 Read sequence

$\underline{\text { Table } 30}$ and $\underline{31}$ show read sequences where:

$$
\begin{aligned}
& S=\text { START } \\
& A=\text { acknowledge } \\
& X X=\text { read status byte } \\
& X=\text { no acknowledge from the master means end of sequence } \\
& P=S T O P
\end{aligned}
$$

Table 30: Status byte acquisition

Start	Address byte		Status byte		Stop
S	C 3	A	XX	X	P

Table 31: Two status bytes acquisition

Start	Address byte	Status byte 1		Status byte 2	
S	C3	A	XX	A	XX

13. Test information

13.1 Measurement circuit

The measurement circuit for PAL on a test jig is given in Figure 7 and the components are given in Table 32.

The pin numbers in parenthesis represent the TDA6501TT.
Fig 7. Measurement circuit for PAL on test jig

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 32: Components for measurement circuit

Component	Value	Component	Value
Capacitors; all SMD and NP0, unless otherwise stated			
C1	1.8 pF (N750)	C15	100 nF
C2	1.5 pF (N750)	C16	820 pF
C3	82 pF (N750)	C17	4.7 nF
C4	1 pF (N750)	C18	4.7 nF
C5	1.5 pF (N750)	C19	4.7 nF
C6	100 pF (N750)	C20	12 pF
C7	1.2 pF (N750)	C21	12 pF
C8	1.2 pF (N750)	C22	160 nF
C9	1.2 pF (N750)	C23	10 nF
C10	1.2 pF (N750)	C25	$10 \mu \mathrm{~F}$ (16 V; electrolytic)
C11	27 pF (N750)	C26	$10 \mu \mathrm{~F}$ (16 V; electrolytic)
C12	4.7 nF	C27	22 pF
C13	4.7 nF	C28	3.9 pF
C14	18 pF		

Resistors; all SMD

R1	12Ω	R 12	220Ω
R2	5.6Ω	R 13	470Ω
R3	27Ω	R 14	$1 \mathrm{k} \Omega$
R4	$5.6 \mathrm{k} \Omega$	R 15	$2.2 \mathrm{k} \Omega$
R5	$22 \mathrm{k} \Omega$	R 16	0Ω
R6	$22 \mathrm{k} \Omega$	R 17	330Ω
R7	$5.6 \mathrm{k} \Omega$	R 18	330Ω
R10	$27 \mathrm{k} \Omega$	R 19	$18 \mathrm{k} \Omega$
R11	$1 \mathrm{k} \Omega$	R20	$4.7 \mathrm{k} \Omega$

Diodes and LEDs

D1	BB182	D4	3 mm
D2	BB178	D5	3 mm
D3	BB179	D6	3 mm
		D7	3 mm

Coils; including IF coil; wire size 0.4 mm

L1	$6 \mathrm{t} ; \varnothing 4 \mathrm{~mm}$	L4	$2 \times 6 \mathrm{t}$; coil type: TOKO 7 kN ; material: 113 kN ; screw core: 03-0093; pot core: 04-0026
L2	$3 \mathrm{t} ; \varnothing 2 \mathrm{~mm}$		
L3	$3 \mathrm{t} ; \varnothing 2 \mathrm{~mm}$		
L5	680 nH		
IC, transistor and crystal			
IC	TDA6500TT; TDA6501TT	X1	4 MHz
Q1	BC847		

13.2 Test circuit for low band measurements

$\mathrm{Z}_{\mathrm{i}} \gg 50 \Omega \rightarrow \mathrm{~V}_{\mathrm{i}}=2 \times \mathrm{V}_{\text {meas }}=80 \mathrm{~dB} \mu \mathrm{~V}$
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}+6 \mathrm{~dB}=80 \mathrm{~dB} \mu \mathrm{~V}$
$\mathrm{V}_{0}=\mathrm{V}_{\text {meas }}^{\prime} \times \frac{50}{\sqrt{50^{2}+L^{2} \omega^{2}}}=\mathrm{V}_{\text {meas }}^{\prime}+$ attenuation
$\mathrm{G}_{\mathrm{v}}=20 \log \frac{V_{o}}{V_{i}}$
PAL: IF = 38.9 MHz ; $\mathrm{L}=680 \mathrm{nH} ; \mathrm{C}=25.9 \mathrm{pF}$ and attenuation $=10.2 \mathrm{~dB}$
Fig 8. Gain $\left(G_{v}\right)$ measurement in low band

a. $f_{R F}=50 \mathrm{MHz}$

Low band mixer frequency response
measured $=57 \mathrm{MHz}$; loss $=0 \mathrm{~dB}$;
image suppression $=16 \mathrm{~dB}$.
$\mathrm{C} 1=9 \mathrm{pF}$.
$\mathrm{C} 2=15 \mathrm{pF}$.
L1 = 7 turns ($\varnothing 5.5 \mathrm{~mm}$,
wire $\varnothing=0.5 \mathrm{~mm}$).
I1 = semi rigid cable (RIM): 5 cm long;
$33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega ; 96 \mathrm{pF} / \mathrm{m}$

b. $f_{R F}=150 \mathrm{MHz}$

Low band mixer frequency response measured = 150.3 MHz;
loss = 1.3 dB ; image suppression $=13 \mathrm{~dB}$.
$\mathrm{C} 3=5 \mathrm{pF}$.
$\mathrm{C} 4=25 \mathrm{pF}$.
$\mathrm{I} 2=$ semi rigid cable (RIM): 30 cm long; $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega 96 \mathrm{pF} / \mathrm{m}$.
13 = semi rigid cable (RIM): 5 cm long; $33 \mathrm{~dB} / 100 \mathrm{~m} ; 50 \Omega 96 \mathrm{pF} / \mathrm{m}$.

Fig 9. Input circuit for optimum noise figure in the low band

$N F=N F_{\text {meas }}-$ loss of input circuit
PAL: IF = 38.9 MHz; L = $680 \mathrm{nH} ; \mathrm{C}=25.9 \mathrm{pF}$
Fig 10. Noise figure (NF) measurement in low band

Fig 11. Maximum RF input level without lock-out in low band

$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {meas }} \times \frac{50}{\sqrt{50^{2}+L^{2} \omega^{2}}}=\mathrm{V}_{\text {meas }}+$ attenuation
Wanted output signal at $\mathrm{f}_{\text {RFpix }} ; \mathrm{V}_{\mathrm{O}}=100 \mathrm{~dB} \mu \mathrm{~V}$.
Unwanted output signal at $\mathrm{f}_{\text {RFpix }}+5.5 \mathrm{MHz}$.
The level of unwanted signal is measured by causing 0.09% AM modulation in the wanted signal.
PAL: IF $=38.9 \mathrm{MHz} ; \mathrm{L}=680 \mathrm{nH} ; \mathrm{C}=25.9 \mathrm{pF}$ and attenuation $=10.2 \mathrm{~dB}$
Fig 12. Cross modulation measurement in low band

13.3 Test circuit for mid and high band measurements

Fig 13. Gain $\left(G_{v}\right)$ measurement in mid and high bands

Loss in hybrid $=1 \mathrm{~dB}$.
$N F=N F_{\text {meas }}-$ loss.
PAL: $\mathrm{IF}=38.9 \mathrm{MHz} ; \mathrm{L}=680 \mathrm{nH} ; \mathrm{C}=25.9 \mathrm{pF}$
Fig 14. Noise figure (NF) measurement in mid and high bands

$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\text {meas }} \times \frac{50}{\sqrt{50^{2}+L^{2} \omega^{2}}}=\mathrm{V}_{\text {meas }}+$ attenuation
Wanted output signal at $\mathrm{f}_{\mathrm{RFpix}} ; \mathrm{V}_{\mathrm{O}}=100 \mathrm{~dB} \mu \mathrm{~V}$.
Unwanted output signal at $\mathrm{f}_{\text {RFpix }}+5.5 \mathrm{MHz}$.
The level of unwanted signal is measured by causing 0.09% AM modulation in the wanted signal.
PAL: IF $=38.9 \mathrm{MHz} ; \mathrm{L}=680 \mathrm{nH} ; \mathrm{C}=25.9 \mathrm{pF}$ and attenuation $=10.2 \mathrm{~dB}$
Fig 15. Cross modulation measurement in mid and high bands

Loss in hybrid $=1 \mathrm{~dB}$.
$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {meas }}-$ loss.
PAL: IF = $38.9 \mathrm{MHz} ; \mathrm{L}=680 \mathrm{nH} ; \mathrm{C}=25.9 \mathrm{pF}$
Fig 16. Maximum RF input level without lock-out in mid and high bands

14. Package outline

TSSOP32: plastic thin shrink small outline package; 32 leads; body width 6.1 mm; lead pitch 0.65 mm

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}	$\boldsymbol{\theta}$
mm	1.1	0.15	0.95	0.25	0.30	0.20	11.1	6.2	0.6	8.3		0.75	0.2	0.1	0.1	0.78	8°
	0.05	0.85		0.19	0.09	10.9	6.0	0.65	7.9	1		0.2	0.1	0			

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT487-1		MO-153		¢	$\begin{aligned} & -99-12-27 \\ & 03-02-18 \end{aligned}$

Fig 17. Package outline SOT487-1 (TSSOP32)

15. Soldering

15.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

15.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from $215^{\circ} \mathrm{C}$ to $270^{\circ} \mathrm{C}$ depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below $225{ }^{\circ} \mathrm{C}$ (SnPb process) or below $245{ }^{\circ} \mathrm{C}$ (Pb-free process)
- for all BGA, HTSSON..T and SSOP..T packages
- for packages with a thickness $\geq 2.5 \mathrm{~mm}$
- for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $\geq 350 \mathrm{~mm}^{3}$ so called thick/large packages.
- below $240{ }^{\circ} \mathrm{C}$ (SnPb process) or below $260^{\circ} \mathrm{C}$ (Pb-free process) for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $<350 \mathrm{~mm}^{3}$ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

15.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between $270^{\circ} \mathrm{C}$ and $320^{\circ} \mathrm{C}$.

15.5 Package related soldering information

Table 33: Suitability of surface mount IC packages for wave and reflow soldering methods

Package [1]	Soldering method	
	Wave	Reflow [2]
BGA, HTSSON..T [3], LBGA, LFBGA, SQFP, SSOP..T [3], TFBGA, VFBGA, XSON	not suitable	suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable [4]	suitable
PLCC [5], SO, SOJ	suitable	suitable
LQFP, QFP, TQFP	not recommended [5] [6]	suitable
SSOP, TSSOP, VSO, VSSOP	not recommended [$\underline{\underline{7}]}$	suitable
CWQCCN..L ${ }^{[8]}$, PMFP [9], WQCCN..L ${ }^{[8]}$	not suitable	not suitable

[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding $217^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.

16. Revision history

Table 34: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
TDA6500_TDA6501_2	20050614	Product data sheet	-	939775015057	TDA6500_TDA6501_1
Modifications:	- The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors. - Table 23 "AGC output": maximum values of $\mathrm{V}_{\max }, \mathrm{V}_{\mathrm{RM}(\mathrm{H})}$ and $\mathrm{V}_{\mathrm{O}(\text { off })}$ changed from 3.6 V to 4.0 V .				
TDA6500_TDA6501_1	20030605	Product specification		939775010109	

17. Data sheet status

Level	Data sheet status $\underline{[1]}$.	Product status $\underline{[2]}$ [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

18. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

19. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

20. Trademarks

Notice - All referenced brands, product names, service names and trademarks are the property of their respective owners.
$I^{2} \mathrm{C}$-bus - wordmark and logo are trademarks of Koninklijke Philips Electronics N.V.

21. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

22. Contents

1 General description 1
2 Features 1
3 Applications 2
4 Ordering information 2
5 Block diagram 3
6 Pinning information 4
6.1 Pinning 4
6.2 Pin description 4
7 Functional description 5
7.1 General 5
7.2 Device control 6
7.2.1 Write mode 6
7.2.2 Read mode 9
7.2.3 Power-on reset 10
8 Internal circuitry. 11
9 Limiting values 15
10 Thermal characteristics. 15
11 Characteristics 16
12 Application information 23
12.1 Tuning amplifier. 23
12.2 Crystal oscillator 23
12.3 Examples of $\mathrm{I}^{2} \mathrm{C}$-bus control 23
12.3.1 Write sequence 23
12.3.2 Read sequence. 24
13 Test information. 24
13.1 Measurement circuit 24
13.2 Test circuit for low band measurements 27
13.3 Test circuit for mid and high band measurements 29
14 Package outline 31
15 Soldering 32
15.1 Introduction to soldering surface mount packages 32
15.2 Reflow soldering 32
15.3 Wave soldering 32
15.4 Manual soldering 33
15.5 Package related soldering information 33
16 Revision history 35
17 Data sheet status 36
18 Definitions 36
19 Disclaimers. 36
20 Trademarks. 36
21 Contact information 36
© Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Published in The Netherlands

