

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Rev. 02 — 14 June 2005

Product data sheet

1. General description

TDA6500TT and TDA6501TT are programmable 2-mixer, 3-oscillator and synthesizer MOPLLs intended for pure 3-band tuner concepts.

The device includes two double balanced mixers for the low and mid/high bands and three oscillators for the low, mid and high bands, respectively. Other functions are an IF amplifier, a wide-band AGC detector and a PLL synthesizer. Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling.

The device can be controlled according to the I²C-bus format.

2. Features

- Single-chip, 5 V mixer/oscillator and synthesizer for TV and VCR tuners
- I²C-bus protocol compatible with 3.3 V and 5 V microcontrollers:
 - Address + 6 data bytes transmission
 - Address + 1 status byte (I²C-bus read mode)
 - Four independent I²C-bus addresses
- Two PMOS open-drain ports with 5 mA source capability to switch high band and FM sound trap (P2 and P3)
- One PMOS open-drain port P1 with 20 mA source capability to switch the mid band
- One PMOS open-drain port P0 with 10 mA source capability to switch the low band
- Five step, 3-bit Analog-to-Digital Converter (ADC) and NPN open-collector general purpose port P6 with 5 mA sinking capability
- NPN open-collector general purpose port P4 with 5 mA sinking capability
- Internal AGC flag
- In-lock flag
- 33 V tuning voltage output
- 15-bit programmable divider
- Programmable reference divider ratio: 64, 80 or 128
- Programmable charge pump current: 60 μA or 280 μA
- Varicap drive disable
- Balanced mixer with a common emitter input for the low band (single input)
- Balanced mixer with a common base input for the mid and high bands (balanced input)
- 2-pin asymmetrical oscillator for the low band
- 2-pin asymmetrical oscillator for the mid band
- 4-pin symmetrical oscillator for the high band

PHILIPS

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

- IF preamplifier with asymmetrical 75 Ω output impedance to drive a SAW filter (500 Ω/40 pF)
- Wide-band AGC detector for internal tuner AGC:
 - Five programmable take-over points
 - Two programmable time constants

3. Applications

- TV and VCR tuners
- Specially suited for switched concepts, all systems
- Specially suited for strong off-air reception

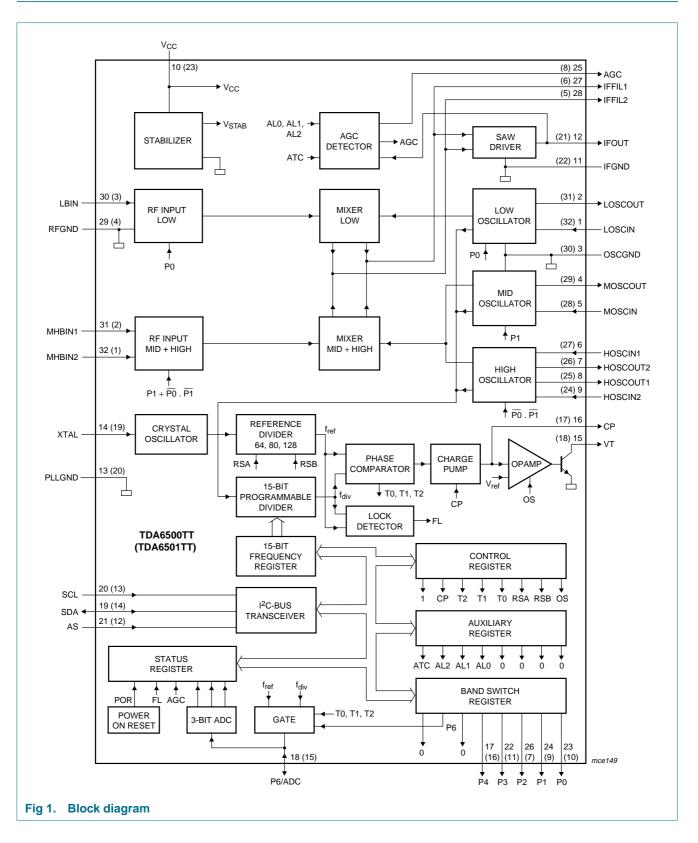
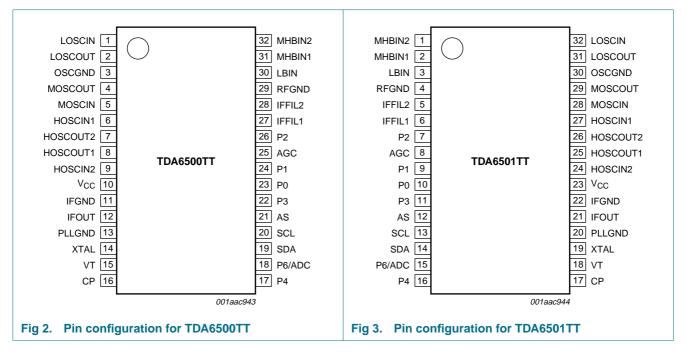

4. Ordering information

Table 1:Ordering information

Type number	Package	Package						
	Name	Description	Version					
TDA6500TT	TSSOP32	plastic thin shrink small outline package; 32 leads;	SOT487-1					
TDA6501TT		body width 6.1 mm; lead pitch 0.65 mm						

5 V mixer/oscillator and synthesizer for PAL and NTSC standards


5. Block diagram

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2: Pin description

Symbol	Pin		Description				
	TDA6500TT	TDA6501TT					
AGC	25	8	AGC output				
AS	21	12	address selection input				
СР	16	17	charge pump output				
HOSCIN1	6	27	high band oscillator input 1				
HOSCIN2	9	24	high band oscillator input 2				
HOSCOUT1	8	25	high band oscillator output 1				
HOSCOUT2	7	26	high band oscillator output 2				
IFFIL1	27	6	IF filter output 1				
IFFIL2	28	5	IF filter output 2				
IFGND	11	22	IF ground				
IFOUT	12	21	IF output				
LBIN	30	3	low band RF input				
LOSCIN	1	32	low band oscillator input				
LOSCOUT	2	31	low band oscillator output				
MHBIN1	31	2	mid and high band RF input 1				
MHBIN2	32	1	mid and high band RF input 2				
MOSCIN	5	28	mid band oscillator input				

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Symbol	Pin		Description
	TDA6500TT TDA6501T		
MOSCOUT	4	29	mid band oscillator output
OSCGND	3	30	oscillator ground
P0	23	10	PMOS open-drain port 0 to select low band operation
P1	24	9	PMOS open-drain port 1 to select mid band operation
P2	26	7	PMOS open-drain general purpose port 2
P3	22	11	PMOS open-drain general purpose port 3
P4	17	16	NPN open-collector general purpose port 4
P6/ADC	18	15	NPN open-collector general purpose port 6 or ADC input
PLLGND	13	20	digital ground
RFGND	29	4	RF ground
SCL	20	13	serial clock input
SDA	19	14	serial data input and output
V _{CC}	10	23	supply voltage
VT	15	18	tuning voltage output
XTAL	14	19	crystal oscillator input

7. Functional description

7.1 General

TDA6500TT and TDA6501TT are programmable 2-mixer, 3-oscillator and synthesizer MOPLLs intended for pure 3-band tuner concepts.

The device includes two double balanced mixers for the low and mid/high bands and three oscillators for the low, mid and high bands respectively. The band limits for PAL tuners are shown in Table 3.

Table 3:Low, mid and high band limits

Band	Input f _{RFpix} (MHz)		Oscillator f _{osc} (MHz)			
	Min	Мах	Min	Max		
Low	45.25	154.25	84.15	193.15		
Mid	161.25	439.25	200.15	478.15		
High	455.25	855.25	494.15	894.15		

Other functions are an IF amplifier, a wide-band AGC detector and a PLL synthesizer.

Two pins are available between the mixer output and the IF amplifier input to enable IF filtering for improved signal handling.

Bit P0 enables Port P0 and the low band mixer and oscillator (see <u>Table 4</u>). Bit P1 enables Port P1, the mid/high band mixer and the mid band oscillator. Bit P2 enables Port P2 and bit P3 enables Port P3. When Ports P0 and P1 are disabled, the mid/high band mixer and the high band oscillator are enabled.

Table 4.	Mixer and Oscillator band selection									
Bit		Mixer ba	and		Oscilla	Oscillator band				
P0	P1	low	mid	high	low	mid	high			
1	0	x			x					
0	1		х	х		х				
0	0		х	х			х			

Table 4: Mixer and oscillator band selection

The AGC detector provides information about the IF amplifier level. Five AGC take-over points are available by software. Two programmable AGC time constants are available for search tuning and normal tuner operation. The synthesizer consists of a 15-bit programmable divider, a crystal oscillator and its programmable reference divider and a phase/frequency detector combined with a charge pump, which drives the tuning amplifier including 33 V output.

Depending on the reference divider ratio (64, 80 or 128) the phase comparator operates at 62.50 kHz, 50.00 kHz or 31.25 kHz with a 4 MHz crystal.

The device can be controlled according to the I^2 C-bus format. The lock detector bit FL is set to logic 1 when the loop is locked. The AGC bit is set to logic 1 when the internal AGC is active (level below 3 V). These two flags are read on the SDA line (status byte) during a read operation (see Table 11).

The ADC input is available on pin P6/ADC for digital AFC control. The ADC code is read during a read operation (see <u>Table 11</u>). In test mode, pin P6/ADC is used as a test output for $\frac{1}{2}f_{ref}$ and $\frac{1}{2}f_{div}$ (see <u>Table 8</u>).

A minimum of seven bytes, including address byte, is required to address the device, select the VCO frequency, program the ports, set the charge pump current, set the reference divider ratio, select the AGC take-over point and select the AGC time constant. The device has four independent l²C-bus addresses which can be selected by applying a specific voltage on input AS (see Table 7).

7.2 Device control

The device is controlled via the I^2C -bus. For programming, a module address of 7 bits and the R/ \overline{W} bit for selecting the read or the write mode is required.

7.2.1 Write mode

Data bytes can be sent to the device after the address transmission (first byte). Seven data bytes are needed to fully program the device. The bus transceiver has an auto-increment facility, which permits the programming of the device within one single transmission (address + 6 data bytes).

The device can also be partially programmed providing that the first data byte following the address is the first divider byte DB1 or the control byte CB. The data bytes are defined in Table 5 and Table 6.

The first bit of the first data byte indicates whether frequency data (first bit = 0) or control, port and auxiliary data (first bit = 1) will follow. Until an I^2C -bus STOP command is sent by the controller, additional data bytes can be entered without the need to re-address the device. The frequency register is loaded with data from byte DB2 after the 8th SCL clock

pulse, the control register is loaded with data from byte CB after the 8th SCL clock pulse, the band switch register is loaded with data of byte BB after the 8th SCL clock pulse and the auxiliary register is loaded with data of byte AB after the 8th SCL clock pulse.

To program the AGC take-over point setting and the AGC current to a different value than the default value, an additional byte, the auxiliary byte, has to be sent. To this end, the auxiliary byte is preceded by a control byte with the test bits T2, T1 and T0 set to logic 011 (see Table 8).

Table 5: I²C-bus data format for write mode

Name	Byte	Bit							Ack	
		MSB							LSB	
Address byte	ADB	1	1	0	0	0	MA1	MA0	$R/\overline{W} = 0$	А
Divider byte 1	DB1	0	N14	N13	N12	N11	N10	N9	N8	А
Divider byte 2	DB2	N7	N6	N5	N4	N3	N2	N1	N0	А
Control byte	СВ	1	СР	T2	T1	Т0	RSA	RSB	OS	А
Band switch byte	BB	0	P6	0	P4	P3	P2	P1	P0	А
Auxiliary byte ^[1]	AB	ATC	AL2	AL1	AL0	0	0	0	0	А

[1] Auxiliary byte AB replaces band switch byte BB when bit T2 = 0, T1 = 1 and T0 = 1.

Symbol	Description					
A	acknowledge					
MA1 and MA0	programmable address bits; see Table 7					
R/W	logic 0 for write mode					
N14 to N0	programmable divider bits; N = (N14 \times 2 ¹⁴) + (N13 \times 2 ¹³) + + (N1 \times 2 ¹) + N0					
СР	charge pump current					
	$CP = 0$: the charge pump current is 60 μA					
	CP = 1: the charge pump current is 280 μ A (default)					
T2, T1 and T0	test bits; see Table 8					
RSA and RSB	reference divider ratio select bits; see Table 9					
OS	tuning amplifier control bit					
	OS = 0: normal operation; tuning voltage is on					
	OS = 1: tuning voltage is off; high-impedance state (default)					
P6 and P4	NPN port control bits					
	Pn = 0: port n is off; high-impedance state (default)					
	$Pn = 1$: buffer n is on; $V_O = V_{CE(sat)}$					
P3 to P0	PMOS port control bits					
	Pn = 0: port n is off; high-impedance state (default)					
	Pn = 1: buffer n is on; $V_O = V_{CC} - V_{DS(sat)}$					
ATC	AGC time constant					
	ATC = 0: I_{AGC} = 220 nA; Δt = 2 s with C = 160 nF (default)					
	ATC = 1: I_{AGC} = 9 μ A; Δt = 50 ms with C = 160 nF					
AL2, AL1 and AL0	AGC take-over point bits; see Table 10					

Table 6: Description of bits shown in Table 5

7 of 37

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

The module address contains programmable address bits (MA1 and MA0) which offer the possibility of having up to 4 synthesizers in one system by applying a specific voltage on the AS input. <u>Table 7</u> gives the relationship between the input voltage applied to the AS input and bits MA1 and MA0.

Table 7: I²C-bus address selection

Voltage applied to pin AS	MA1	MA0
0 V to 0.1V _{CC}	0	0
$0.2V_{CC}$ to $0.3V_{CC}$ or open	0	1
0.4V _{CC} to 0.6V _{CC}	1	0
0.9V _{CC} to V _{CC}	1	1

Table 8: Test modes

T2	T1	Т0	Test modes					
0	0	0	normal mode					
0	0	1	normal mode; default mode at power-on reset					
0	1	0	charge pump is off					
0	1	1	control byte is followed by auxiliary byte AB instead of the band switch byte BB					
1	1	0	charge pump is sinking current					
1	1	1	charge pump is sourcing current					
1	0	0	¹ / ₂ f _{ref} is available on pin P6/ADC [1]					
1	0	1	¹ / ₂ f _{div} is available on pin P6/ADC [1]					

[1] The ADC input cannot be used when these test modes are active; see Section 7.2.2 for more information.

Table 9: Reference divider ratio select

RSA	RSB	Reference divider ratio
0	0	80
0	1	128
1	1	64
1	0	forbidden

Table 10: AGC take-over point

AL2	AL1	AL0	Asymmetrical mode			
0	0	0	115 dBµV			
0	0	1	115 dBµV			
0	1	0	112 dB μ V; default mode at power-on reset			
0	1	1	109 dBµV			
1	0	0	106 dBµV			
1	0	1	103 dBµV			
1	1	0	I _{AGC} = 0 mA; external AGC [1]			
1	1	1	3.5 V; disabled [1]			

[1] The AGC detector is disabled. Both the sinking and sourcing currents from the IC are disabled. The AGC output goes into a high-impedance state and an external AGC source can be connected in parallel.

[2] The AGC detector is disabled and the fast mode current source is enabled.

7.2.2 Read mode

Data can be read from the device by setting the R/\overline{W} bit to logic 1. The data read format is shown in <u>Table 11</u>. After the slave address has been recognized, the device generates an acknowledge pulse and the first data byte (status byte) is transferred on the SDA line with the MSB first. Data is valid on the SDA line during a HIGH-level of the SCL clock signal.

A second data byte can be read from the device if the microcontroller generates an acknowledge on the SDA line (master acknowledge). End of transmission will occur if no master acknowledge occurs. The device will then release the data line to allow the microcontroller to generate a STOP condition.

The POR flag is set to logic 1 at power-on. The flag is reset when an end-of-data is detected by the device (end of a read sequence).

Control of the loop is made possible with the in-lock flag (FL) which indicates when the loop is locked (FL = 1).

The internal AGC status is available from the AGC bit. AGC = 1 indicates when the selected take-over point is reached.

A built-in ADC is available on the P6/ADC pin. The ADC can be used to apply AFC information to the microcontroller from the IF section of the tuner. The relationship between the voltage applied to the ADC input and the A2, A1 and A0 bits is given in Table 13.

Table 11: Read data format

Name	Byte	Bit	Bit								
		MSB ^[1]							LSB		
Address byte	ADB	1	1	0	0	0	MA1	MA0	R/W = 1	А	
Status byte	SB	POR	FL	1	1	AGC	A2	A1	A0	-	

[1] MSB is transmitted first.

Table 12: Description of bits shown in Table 11

Symbol	Description
A	acknowledge
MA1 and MA0	programmable address bits; see Table 7
R/W	logic 1 for read mode
POR	power-on reset flag
	POR = 0, normal operation
	POR = 1, power-on state
FL	in-lock flag
	FL = 0, not locked
	FL = 1, the PLL is locked
AGC	internal AGC flag
	AGC = 0, internal AGC not active
	AGC = 1, internal AGC is active; level below 3 V
A2, A1 and A0	digital output of the 5-level ADC; see Table 13

Table 13: ADC levels			
Voltage applied to ADC input [1]	A2	A1	A0
$0.60V_{CC}$ to V_{CC}	1	0	0
$0.45V_{CC}$ to $0.60V_{CC}$	0	1	1
$0.30V_{CC}$ to $0.45V_{CC}$	0	1	0
$0.15V_{CC}$ to $0.30V_{CC}$	0	0	1
0 V to 0.15V _{CC}	0	0	0

[1] Accuracy is $\pm 0.03 V_{CC}$.

7.2.3 Power-on reset

The power-on detection threshold voltage is set to $V_{POR} = 3.5$ V at room temperature. Below this threshold, the device is reset to the power-on state.

In the power-on state, the charge pump current is set to $280 \ \mu$ A, the tuning voltage output is disabled, the test bits T2 = 0, T1 = 0 and T0 = 1, the AGC take-over point is set to 112 dB μ V and the AGC current is set to the slow mode. The high band is selected by default.

Table 14: Default bits at power-on reset

Name	Byte	Bit							
		MSB							LSB
Address byte	ADB	1	1	0	0	0	MA1	MA0	Х
Divider byte 1	DB1	0	Х	Х	Х	Х	Х	Х	Х
Divider byte 2	DB2	Х	Х	Х	Х	Х	Х	Х	Х
Control byte	СВ	1	1	0	0	1	Х	Х	1
Band switch byte	BB	-	0	-	0	0	0	0	0
Auxiliary byte	AB	0	0	1	0	-	-	-	-

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

8. Internal circuitry

Table 15: In Symbol	ternal circuits Pin		Average D	C voltage ve	rsus band	Equivalent circuit ^[1]
			selection			
	TDA6500TT	TDA6501TT	Low	Mid	High	
LOSCIN	1	32	1.7	1.4	1.4	
LOSCOUT	2	31	2.9	3.5	3.5	(32) 1 - Ce222
OSCGND	3	30	-	-	-	-
MOSCOUT	4	29	3.5	3.02	3.5	
MOSCIN	5	28	1.4	1.7	1.4	(28) 5
HOSCIN1	6	27	2.2	2.2	1.8	
HOSCOUT2	7	26	5	5	2.5	
HOSCOUT1	8	25	5	5	2.5	Ц Ц _–
HOSCIN2	9	24	2.2	2.2	1.8	(25) 8 7 (2 (27) 6 9 (2 (27) 6 <i>mce141</i>
V _{CC}	10	23	5.0	5.0	5.0	-
IFGND	11	22	-	-	-	11 (22) <i>tce225</i>
IFOUT	12	21	2.1	2.1	2.1	12 (21) fce226

9397 750 15057

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Symbol	Pin		Average D selection	C voltage ve	ersus band	Equivalent circuit [1]
	TDA6500TT	TDA6501TT	Low	Mid	High	_
PLLGND	13	20	-	-	-	13 (20) fce227
XTAL	14	19	0.7	0.7	0.7	14 (19) mce142
VT	15	18	V _{VT}	V _{VT}	V _{VT}	15 (18) mce143
СР	16	17	1.0	1.0	1.0	
P4	17	16	V _{CE(sat)} or High Z	V _{CE(sat)} or High Z	V _{CE(sat)} or High Z	17 (16) mce145
P6/ADC	18	15	V _{CE(sat)} or High Z	V _{CE(sat)} or High Z	V _{CE(sat)} or High Z	(15) 18 (15) 18 (15) 18 (15) 18 (15) (15) (15) (15) (15) (15) (15) (15)

Table 15: Internal circuits ...continued

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Symbol	Pin		Average DC selection	C voltage ver	sus band	Equivalent circuit [1]
	TDA6500TT	TDA6501TT	Low	Mid	High	
SDA	19	14	n.a.	n.a.	n.a.	(14) 19
SCL	20	13	n.a.	n.a.	n.a.	(13) 20
AS	21	12	1.25	1.25	1.25	(12) 21 (12) 21 (12) 21 (12) (12) (12) (
P3	22	11		High Z or V _{CC} – V _{DS}	High Z or V _{CC} – V _{DS}	22 (11) fce236
P0	23	10	V _{CC} – V _{DS}	High Z	High Z	23 (10) fce237
P1	24	9		V _{CC} – V _{DS}		24 (9) fce238
AGC	25	8	0 V or 3.5 V	0 V or 3.5 V	0 V or 3.5 V	25 (8) fce239

Table 15: Internal circuits ...continued

9397 750 15057 Product data sheet

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Symbol	Pin		Average DO selection	C voltage ver	sus band	Equivalent circuit [1]
	TDA6500TT	TDA6501TT	Low	Mid	High	
P2	26	7	High Z or V _{CC} – V _{DS}	High Z or V _{CC} – V _{DS}	High Z or V _{CC} – V _{DS}	26 (7) fce240
IFFIL1	27	6	4.4	4.4	4.4	
IFFIL2	28	5	4.4	4.4	4.4	
RFGND	29	4	-	-	-	29 (4)
LBIN	30	3	1.8	n.a.	n.a.	(3) 30
MHBIN1	31	2	n.a.	1.0	1.0	
MHBIN2	32	1	n.a.	1.0	1.0	(2) 31 32 (1) mce148

Table 15: Internal circuits ...continued

[1] The pin numbers in parenthesis represent the TDA6501TT.

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

9. Limiting values

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.3	+6	V
V _{XTAL}	crystal input voltage		-0.3	V _{CC} + 0.3	V
V _{P6/ADC}	NPN port input and output voltage		-0.3	V _{CC} + 0.3	V
I _{P6/ADC}	NPN port output current (open-collector)		0	10	mA
V _{VT}	tuning voltage output		-0.3	+35	V
V _{CP}	charge pump output voltage		-0.3	$V_{CC} + 0.3$	V
V _{P4}	NPN port output voltage (open-collector)		-0.3	$V_{CC} + 0.3$	V
I _{P4}	NPN port output current (open-collector)		0	10	mA
V _{SDA}	serial data input/output voltage		-0.3	+6	V
I _{SDA}	serial data output current		-1	+10	mA
V _{SCL}	serial clock input voltage		-0.3	+6	V
V _{AS}	address selection input voltage		-0.3	$V_{CC} + 0.3$	V
V _{Pn}	PMOS port output voltage (open-drain)		-0.3	$V_{CC} + 0.3$	V
I _{P1}	PMOS port output current (open-drain)		-25	0	mA
I _{P0}	PMOS port output current (open-drain)		-15	0	mA
I _{P2} , I _{P3}	PMOS port output current (open-drain)		-10	0	mA
T _{stg}	storage temperature		-40	+150	°C
T _{amb}	ambient temperature		-20	+85	°C
Tj	junction temperature		-	150	°C

[1] Maximum ratings cannot be exceeded, not even momentarily without causing irreversible IC damage. Maximum ratings cannot be accumulated.

10. Thermal characteristics

Table 17:	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
SOT487E	C3 package (TDA6500TT)			
R _{th(j-a)}	thermal resistance from junction to ambient	in free air; one layer printed-circuit board, JEDEC standards	[<u>1]</u> 110	K/W
SOT487E	C5 package (TDA6501TT)			
R _{th(j-a)}	thermal resistance from junction to ambient	in free air; one layer printed-circuit board, JEDEC standards	^[1] 115	K/W

[1] The thermal resistance is highly dependant on the printed-circuit board on which the package is mounted. The thermal resistance values are given only for customer's guidance.

11. Characteristics

Table 18: Supplies

 $V_{CC} = 5 V$; $T_{amb} = 25 \circ C$; values are given for an IF amplifier with 500 Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply						
V _{CC}	supply voltage		4.5	5.0	5.5	V
I _{CC}	supply current	all PNP ports off	-	74	94	mA
		one PNP port on; sourcing 20 mA	-	96	116	mA
		two PNP ports on; one port sourcing 20 mA; one other port sourcing 5 mA		102	122	mA

Table 19: PLL

 $V_{CC} = 5 V$; $T_{amb} = 25 \circ C$; values are given for an IF amplifier with 500 Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Functional	range					
V _{POR}	power-on reset supply voltage	for a voltage lower than V _{POR} , power-on reset is active	1.5	3.5	-	V
Ν	divider ratio	15-bit frequency word	64	-	32767	
f _{XTAL}	crystal oscillator frequency	R_{XTAL} = 25 Ω to 300 Ω	3.2	4.0	4.48	MHz
Z _{XTAL}	input impedance (absolute value)	$f_{XTAL} = 4 \text{ MHz}$	600	1200	-	Ω
PMOS ports	s: P0, P1, P2 and P3					
I _{LO}	output leakage current	$V_{CC} = 5.5 \text{ V}; V_{Pn} = 0 \text{ V}$	-	-	10	μA
V _{DS(P0)(sat)}	output saturation voltage	buffer P0 is on only; sourcing 10 mA	-	0.25	0.4	V
V _{DS(P1)(sat)}	output saturation voltage	buffer P1 is on only; sourcing 20 mA	-	0.25	0.4	V
V _{DS(P2)(sat)} , V _{DS(P3)(sat)}	output saturation voltage	buffer P2 or P3 is on; sourcing 5 mA	-	0.25	0.4	V
NPN ports:	P4 and P6					
I _{LO}	output leakage current	V _{CC} = 5.5 V; V _{Pn} = 6 V	-	-	10	μA
V _{CE(sat)}	output saturation voltage	buffer P4 or P6 is on; sinking 5 mA	-	0.25	0.4	V
ADC input						
VI	ADC input voltage	see Table 13	0	-	V_{CC}	V
I _{IH}	HIGH-level input current	ADC input $V_i = V_{CC}$	-	-	10	μΑ
IIL	LOW-level input current	ADC input $V_i = 0 V$	-10	-	-	μΑ
AS input (a	ddress selection)					
I _{IH}	HIGH-level input current	AS input $V_i = V_{CC}$	-	-	10	μΑ
IIL	LOW-level input current	AS input $V_i = 0 V$	-10	-	-	μΑ
SCL and SE	DA inputs					
VIL	LOW-level input voltage		0	-	1.5	V
V _{IH}	HIGH-level input voltage		2.3	-	5.5	V
I _{IH}	HIGH-level input current	$V_{BUS} = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	10	μΑ
		V_{BUS} = 5.5 V; V_{CC} = 5.5 V	-	-	10	μΑ

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 19: PLL ... continued

 $V_{CC} = 5 V$; $T_{amb} = 25 \circ C$; values are given for an IF amplifier with 500 Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{IL}	LOW-level input current	$V_{BUS} = 1.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	10	μA
		V_{BUS} = 0 V; V_{CC} = 5.5 V	-10	-	-	μA
SDA outpu	it					
I _{LO}	leakage current	SDA output $V_o = 5.5 V$	-	-	10	μA
Vo	output voltage	I _{o(sink)} = 3 mA	-	-	0.4	V
Clock freq	uency					
f _{clk}	clock frequency		-	-	400	kHz
Charge pu	mp output CP					
I _{IH}	HIGH-level input current (absolute value)	CP = 1	-	280	-	μΑ
I _{IL}	LOW-level input current (absolute value)	CP = 0	-	60	-	μΑ
I _{LO(off)}	off-state leakage current	T2 = 0; T1 = 1; T0 = 0	-15	0	+15	nA
Tuning vol	tage output VT					
I _{LO(off)}	off-state leakage current	OS = 1; V _{VT} = 33 V	-	-	10	μA
Vo	output voltage when the loop is closed	$\begin{split} &OS = 0; T2 = 0; T1 = 0; T0 = 1; \\ &R_L = 27 \; k\Omega; \; V_{VT} = 33 \; V \end{split}$	0.2	-	32.7	V

Table 20: Mixer

 $V_{CC} = 5 V$; $T_{amb} = 25 \degree C$; values are given for an IF amplifier with 500 Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Low band	mixer mode (P0 = 1 and P1 =	• 0); including IF amplifier					
f _{RF}	RF frequency	picture carrier	[1]	44.25	-	154.25	MHz
Gv	voltage gain	f _{RF} = 44.25 MHz; see <u>Figure 8</u>		25.0	27.5	30	dB
		f _{RF} = 157 MHz; see <u>Figure 8</u>		25.0	27.5	30	dB
NF	noise figure	$f_{RF} = 50 \text{ MHz}$; see Figure 9 and 10		-	8.0	10.0	dB
V _{o(mod)}	output voltage causing	$f_{RF} = 44.25 \text{ MHz}; \text{ see } \frac{\text{Figure } 12}{12}$		108	111	-	dBµV
	0.3 % cross modulation in channel	f _{RF} = 157 MHz; see <u>Figure 12</u>		108	111	-	dBμV
V _{o(FM)}	output voltage causing	f _{RF} = 44.25 MHz	[2]	108	111	-	dBµV
	1.1 kHz incidental FM	f _{RF} = 157 MHz	[2]	108	111	-	dBµV
INT _{SO2}	channel SO2 beat	$V_{RFpix} = 115 \text{ dB}\mu \text{V}$ at IF output	[3]	57	60	-	dBc
Vi	input level without lock-out	see Figure 11	[4]	-	-	120	dBµV
9 _{os}	optimum source	f _{RF} = 50 MHz		-	0.7	-	mS
	conductance for noise figure	f _{RF} = 150 MHz		-	0.9	-	mS
9i	input conductance	f _{RF} = 44.25 MHz; see <u>Figure 4</u>		-	0.30	-	mS
		f _{RF} = 161.25 MHz; see <u>Figure 4</u>		-	0.33	-	mS
C _i	input capacitance	f _{RF} = 44.25 to 161.25 MHz; see Figure 4		-	1.29	-	pF
High band	d mixer in mid band mode (P0	= 0 and P1 = 1); including IF amplifier					
f _{RF}	RF frequency	picture carrier	[1]	161.25	-	439.25	MHz
397 750 15057				© Koninklijk	e Philips Electro	onics N.V. 2005.	All rights reserve
		D 00 441 0005					

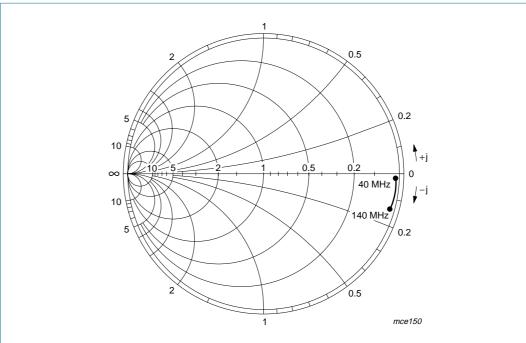
5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 20: Mixer ... continued

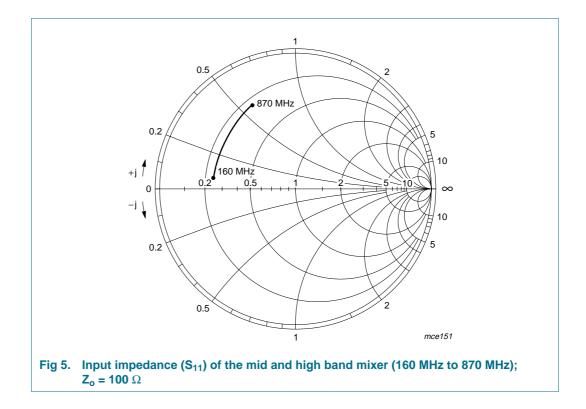
 $V_{CC} = 5 V$; $T_{amb} = 25 \circ C$; values are given for an IF amplifier with 500 Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Gv	voltage gain	f _{RF} = 157 MHz; see <u>Figure 13</u>		35	38	41	dB
		f _{RF} = 443 MHz; see <u>Figure 13</u>		35	38	41	dB
NF	noise figure (not corrected	f _{RF} = 157 MHz; see <u>Figure 14</u>		-	6	8.0	dB
	for image)	f _{RF} = 443 MHz; see <u>Figure 14</u>		-	6	8.0	dB
V _{o(mod)}	output voltage causing	f _{RF} = 157 MHz; see <u>Figure 15</u>		108	111	-	dBμV
	0.3 % cross modulation in channel	f _{RF} = 443 MHz; see <u>Figure 15</u>		108	111	-	dBμV
V _{o(FM)}	output voltage causing	f _{RF} = 157 MHz	[2]	108	111	-	dBμV
	1.1 kHz incidental FM	f _{RF} = 443 MHz	[2]	108	111		dBμV
V _{f(N+5)-1}	(N + 5) – 1 MHz pulling	$f_{RFwanted}$ = 443 MHz; f_{osc} = 481.9 MHz; $f_{RFunwanted}$ = 482 MHz	[5]	72	80	-	dBμV
Zi	input impedance (R _S + jL _S ω)	R_S at f_{RF} = 157 MHz; see <u>Figure 5</u>		-	25	-	Ω
		R_S at f_{RF} = 443 MHz; see Figure 5		-	25	-	Ω
		L_S at f_{RF} = 157 MHz; see Figure 5		-	13	-	nH
		L_S at f_{RF} = 443 MHz; see Figure 5		-	13	-	nH
Vi	input level without lock-out	see Figure 16	[4]	-	-	120	dBµV
High band	mixer in high band mode (P	0 = 0 and P1 = 0); including IF amplifier	•				
f _{RF}	RF frequency	picture carrier	[1]	455.25	-	855.25	MHz
Gv	voltage gain	f _{RF} = 443 MHz; see <u>Figure 13</u>		35	38	41	dB
		f _{RF} = 863.25 MHz; see <u>Figure 13</u>		35	38	41	dB
NF	noise figure (not corrected	f _{RF} = 443 MHz; see <u>Figure 14</u>		-	6.0	8.0	dB
	for image)	f _{RF} = 863.25 MHz; see <u>Figure 14</u>		-	7.0	9.0	dB
V _{o(mod)}	output voltage causing	f _{RF} = 443 MHz; see <u>Figure 15</u>		108	111	-	dBμV
	0.3 % cross modulation in channel	$f_{RF} = 863.25 \text{ MHz}; \text{ see } \frac{\text{Figure } 15}{1000 \text{ MHz}}$		108	111	-	dBμV
V _{o(FM)}	output voltage causing	f _{RF} = 443 MHz	[2]	108	111	-	dBμV
	1.1 kHz incidental FM	f _{RF} = 863.25 MHz	[2]	108	111	-	dBμV
V _{f(N+5)-1}	(N + 5) – 1 MHz pulling	$f_{RFwanted}$ = 863.25 MHz; f_{osc} = 902.15 MHz; $f_{RFunwanted}$ = 902.25 MHz	<u>[5]</u>	72	80	-	dBμV
Zi	input impedance (R _S + jL _S ω)	R_S at f_{RF} = 443 MHz; see Figure 5		-	25	-	Ω
		R_S at f_{RF} = 863.25 MHz; see Figure 5		-	23	-	Ω
		L_S at f_{RF} = 443 MHz; see Figure 5		-	13	-	nH
		L_S at f_{RF} = 863.25 MHz; see Figure 5		-	13	-	nH
Vi	input level without lock-out	see Figure 16	[4]	-	-	120	dBµV

[1] The RF frequency range is defined by the oscillator frequency range and the Intermediate Frequency (IF).


[2] This is the level of the RF unwanted signal, 50 % amplitude modulated with 1 kHz, that causes a 1.1 kHz FM modulation of the local oscillator and thus of the wanted signal; V_{wanted} = 100 dBμV; f_{unwanted} = f_{wanted} + 5.5 MHz. The FM modulation is measured at the oscillator output with a peeking coil using a modulation analyzer with a peak-to-peak detector and a post detection filter of 300 Hz up to 3 kHz.

[3] Channel SO2 beat is the interfering product of f_{RFpix} , f_{IF} and f_{osc} of channel SO2; f_{beat} = 37.35 MHz. The possible mechanisms are: $f_{osc} - 2 \times f_{IF}$ or $2 \times f_{RFpix} - f_{osc}$. For the measurement $V_{o(IFOUT)} = V_{RFpix}$ = 115 dBµV.


TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

- [4] The IF output signal stays stable within the range of the f_{ref} step for a low level RF input up to 120 dB μ V. This should be verified for every channel in the band.
- [5] (N + 5) 1 MHz pulling is the input level of channel N + 5, at frequency 1 MHz lower, causing FM sidebands 30 dB below the wanted carrier.

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 21: Oscillator

 $V_{CC} = 5 V$; $T_{amb} = 25 \degree C$; values are given for an IF amplifier with 500 Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Low band	oscillator					
f _{osc}	oscillator frequency		<u>[1]</u> 84.	15 -	193.15	MHz
$\Delta f_{osc(V)}$	oscillator frequency shift with	$\Delta V_{CC} = 5 \%$	[2] _	20	70	kHz
	supply voltage	$\Delta V_{CC} = 10 \%$	[2] _	110	-	kHz
$\Delta f_{\text{osc}(\text{T})}$	oscillator frequency drift with temperature	$\Delta T = 25 \text{ °C}; V_{CC} = 5 \text{ V with}$ compensation	<u>[3]</u> _	800	1100	kHz
$\Delta f_{osc(t)}$	oscillator frequency switch-on drift	5 s to 15 min after switching on V_{CC} = 5 V	<u>[4]</u> _	500	700	kHz
$\Phi_{\sf osc}$	phase noise, carrier-to-noise sideband	\pm 10 kHz frequency offset; worst case in the frequency range	84	87	-	dBc/Hz
		±100 kHz frequency offset; worst case in the frequency range	104	107	-	dBc/Hz
RSC _{p-p}	ripple susceptibility of V _{CC} (peak-to-peak value)	4.75 V < V _{CC} < 5.25 V; worst case in the frequency range; ripple frequency 500 kHz	<u>[5]</u> 15	20	-	mV
Mid band	oscillator					
f _{osc}	oscillator frequency		[1] 200	0.15 -	478.15	MHz
$\Delta f_{osc(V)}$	oscillator frequency shift with	$\Delta V_{CC} = 5 \%$	[2] _	20	70	kHz
	supply voltage	$\Delta V_{CC} = 10 \%$	[2] _	110	-	kHz
$\Delta f_{osc(T)}$	oscillator frequency drift with temperature	$\Delta T = 25 \text{ °C}; V_{CC} = 5 \text{ V with}$ compensation	<u>[3]</u> _	1000	1500	kHz
$\Delta f_{\text{osc}(t)}$	oscillator frequency drift after switch-on	5 s to 15 min after switching on V_{CC} = 5 V	<u>[4]</u> _	500	700	kHz
$\Phi_{\sf OSC}$	phase noise, carrier-to-noise sideband	\pm 10 kHz frequency offset; worst case in the frequency range	84	87	-	dBc/Hz
		±100 kHz frequency offset; worst case in the frequency range	104	107	-	dBc/Hz
RSC _{p-p}	ripple susceptibility of V _{CC} (peak-to-peak value)	4.75 V < V _{CC} < 5.25 V; worst case in the frequency range; ripple frequency 500 kHz	<u>5</u> 15	20	-	mV
High band	oscillator					
f _{osc}	oscillator frequency		<u>[1]</u> 494	.15 -	894.15	MHz
$\Delta f_{osc(V)}$	oscillator frequency shift with	$\Delta V_{CC} = 5 \%$	[2] _	20	70	kHz
	supply voltage	ΔV_{CC} = 10 %	[2] _	300	-	kHz
$\Delta f_{\text{osc}(\text{T})}$	oscillator frequency drift with temperature	$\Delta T = 25 \text{ °C}; V_{CC} = 5 \text{ V}$ with compensation	[3] _	1100	1500	kHz
$\Delta f_{\text{osc}(t)}$	oscillator frequency drift after switch-on	5 s to 15 min after switching on V_{CC} = 5 V	<u>[4]</u> _	600	900	kHz

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 21: Oscillator ... continued

 $V_{CC} = 5 V$; $T_{amb} = 25 \circ C$; values are given for an IF amplifier with 500 Ω load (measured as shown in <u>Figure 7</u> for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Phi_{\rm OSC}$	phase noise, carrier-to-noise sideband	$\pm 10 \text{ kHz}$ frequency offset; worst case in the frequency range	84	87	-	dBc/Hz
		±100 kHz frequency offset; worst case in the frequency range	104	107	-	dBc/Hz
RSC _{p-p}	ripple susceptibility of V _{CC} (peak-to-peak value)	$4.75 \text{ V} < \text{V}_{CC} < 5.25 \text{ V}$; worst case in the frequency range; ripple frequency 500 kHz	<u>^[5]</u> 15	20	-	mV

[1] Limits are related to the tank circuits used in Figure 7 for a PAL application. The choice of different external components adapts the measurement circuit to other frequency bands or NTSC applications.

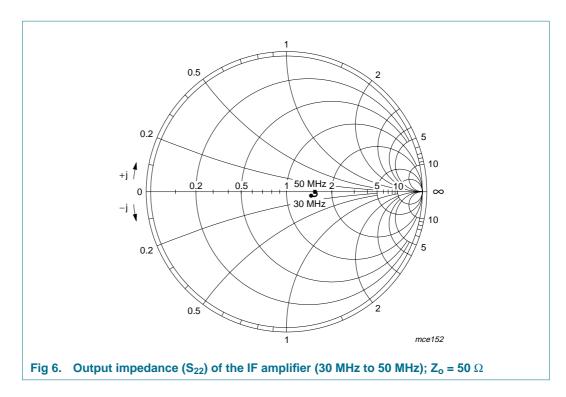
[2] The frequency shift is defined as a change in oscillator frequency when the supply voltage varies from $V_{CC} = 5 \text{ V}$ to 4.75 V (4.5 V) or from $V_{CC} = 5 \text{ V}$ to 5.25 V (5.5 V). The oscillator is free running during this measurement.

- [3] The frequency drift is defined as a change in oscillator frequency when the ambient temperature varies from T_{amb} = 25 °C to 50 °C or from T_{amb} = 25 °C to 0 °C. The oscillator is free running during this measurement.
- [4] Switch-on drift is defined as the change in oscillator frequency between 5 s and 15 min after switch on. The oscillator is free running during this measurement.
- [5] The supply ripple susceptibility is measured in the circuit according to Figure 7 using a spectrum analyzer connected to the IF output. An unmodulated RF signal is applied to the test board RF input. A sinewave signal with a frequency of 500 kHz is superimposed onto the supply voltage. The amplitude of this ripple signal is adjusted to bring the 500 kHz sidebands around the IF carrier to a level of –53.5 dB with respect to the carrier.

Table 22: IF amplifier

 $V_{CC} = 5 V$; $T_{amb} = 25 \circ C$; values are given for an IF amplifier with 500 Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IF amplifie	r					
S ₂₂	output reflection coefficient	magnitude; see Figure 6	-	38	-	dB
		phase; see Figure 6	-	0.36	-	deg
Zo	output impedance (R _S + jL _S ω)	R _S at 36.15 MHz	-	79	-	Ω
		C _S at 36.15 MHz	-	9	-	nF
		R _S at 43.5 MHz	-	80	-	Ω
		C _S at 43.5 MHz	-	3	-	nF
Rejection	at the IF output					
INT _{div}	level of divider interferences in the IF signal	worst case	<u>[1]</u> _	-	23	dBμV
INT _{XTAL}	crystal oscillator interferences rejection	V_{IF} = 100 dBµV; worst case in the frequency range	2 60	66	-	dBc
INTf _{ref}	reference frequency rejection	V_{IF} = 100 dBµV; worst case in the frequency range	<u>[3]</u> 60	66	-	dBc


[1] This is the level of divider interferences close to the IF. For example channel S3: $f_{osc} = 158.15$ MHz, $\frac{1}{4}f_{osc} = 39.5375$ MHz. The LOSCIN input must be left open (i.e. not connected to any load or cable); the HOSCIN1 and HOSCIN2 inputs are connected to a hybrid.

[2] Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection has to be greater than 60 dB for an IF output signal of 100 dBμV.

[3] The reference frequency rejection is the level of reference frequency sidebands (e.g. 62.5 kHz) related to the carrier. The rejection has to be greater than 60 dB for an IF output signal of 100 dBμV.

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 23: AGC output

 $V_{CC} = 5 V$; $T_{amb} = 25 °C$; values are given for an IF amplifier with 500 Ω load (measured as shown in Figure 7 for the PAL standard); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AGC _{TOP}	AGC take-over point	AL2 = 0; AL1 = 1; AL0 = 0	110.5	112	113.5	dBμV
Isource(fast)	source current 1		8.0	9.5	11.0	μΑ
Isource(slow)	source current 2		210.0	245.0	280.0	nA
Isink(peak)	peak sink current to ground		80	100	120	μΑ
V _{max}	AGC maximum output voltage		3.45	3.5	4.0	V
V _{min}	AGC minimum output voltage		0	-	0.1	V
V _{RF(slip)}	RF voltage range to switch the AGC from active to not active mode		-	-	0.5	dB
V _{RM(L)}	AGC output voltage	AGC bit = 1 or AGC active	0	-	2.9	V
V _{RM(H)}	AGC output voltage	AGC bit = 0 or AGC not active	3	3.5	4.0	V
I _{LO}	AGC leakage current	AL2 = 1; AL1 = 1; AL0 = 0; 0 V < V _{AGC} < V _{CC}	-50	-	+50	nA
V _{O(off)}	AGC output voltage with AGC disabled	AL2 = 1; AL1 = 1; AL0 = 1	3.45	3.5	4.0	V

12. Application information

12.1 Tuning amplifier

The tuning amplifier is capable of driving the varicap voltage without an external transistor. The tuning voltage output must be connected to an external load of 27 k Ω which is connected to the tuning voltage supply rail. The loop filter design depends on the oscillator characteristics and the selected reference frequency.

12.2 Crystal oscillator

The crystal oscillator uses a 4 MHz crystal connected in series with an 18 pF capacitor thereby operating in the series resonance mode. Connecting the crystal to the ground is preferred, but it can also be connected to the supply voltage.

12.3 Examples of I²C-bus control

Conditions:

 $f_{osc} = 100 \text{ MHz}$ P0 = on (to switch on low band) P3 = on $I_{CP} = 280 \,\mu A$ $f_{step} = 62.5 \text{ kHz}$ N = 1600 $f_{XTAL} = 4 \text{ MHz}$ $I_{AGC} = 245 \text{ nA}$ AGC take-over point = set to 112 dBµV asymmetrical

12.3.1 Write sequence

Table 24 to 29 show various write sequences where:

S = START A = acknowledge P = STOP

For the complete sequence see Table 24 (sequence 1) or Table 25 (sequence 2).

Other l^2 C-bus addresses may be selected by applying an appropriate voltage to pin AS.

Table 24: Complete sequence 1															
Start	Addre byte	ess	Divide byte 1		Divide byte 2		Contro byte	ol	Band byte	switch	Contro byte	ol	Auxili byte	ary	Stop
S	C2	А	06	А	40	А	CE	А	09	А	DE	А	20	А	Р

Table 25: Complete sequence 2

Start	Addre byte	ess	Contr byte	ol	Auxili byte	ary	Contr byte	ol	Band byte	switch	Divide byte 1		Divide byte 2		Stop
S	C2	А	DE	А	20	А	CE	А	09	А	06	А	40	А	Р

9397 750 15057

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 26:	Divider bytes	Divider bytes only sequence								
Start	Address	byte	Divider b	yte 1	Divider I	oyte 2	Stop			
S	C2	А	06	А	40	А	Р			
			ytes only seque		D	101 1 4	0			
Table 27: Start	Control and k		ytes only seque		Band sw	vitch byte	Stop			
					Band sw	r <mark>itch byte</mark> A	Stop P			

Table 28:	Control	and	auxiliary	bytes	only	sequence
-----------	---------	-----	-----------	-------	------	----------

Start	Address byte		Control byte		Auxiliary byte		Stop
S	C2	А	DE	А	20	А	Р

Table 29: C	Table 29: Control byte only sequence									
Start	Address b	yte	Control byte		Stop					
S	C2	А	DE	А	Р					

12.3.2 Read sequence

Table 30 and 31 show read sequences where:

S = START

A = acknowledge

XX = read status byte

X = no acknowledge from the master means end of sequence

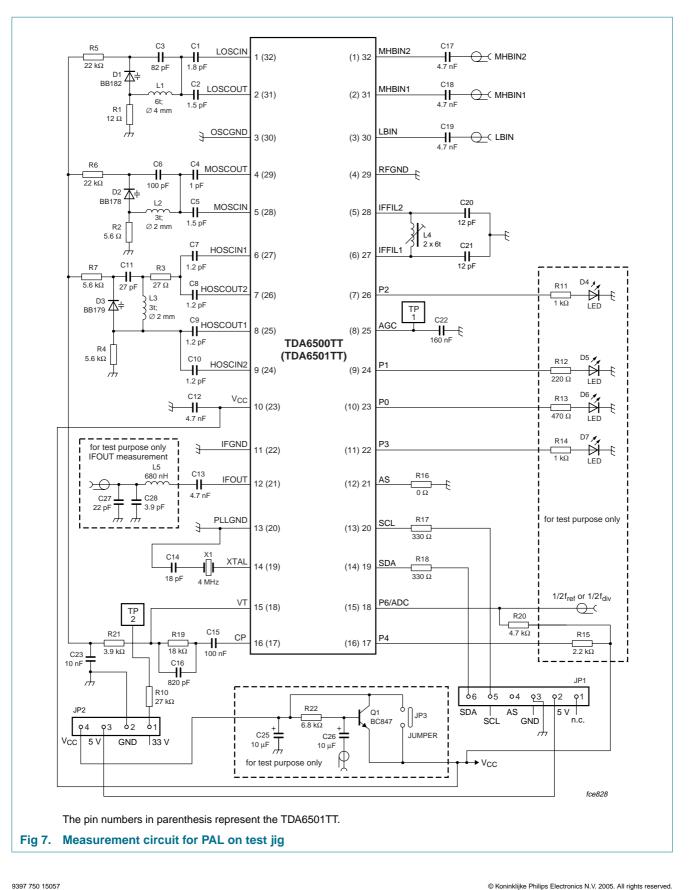
P = STOP

Table 30: Status byte acquisition

Start	Address byte		Status byte	Stop	
S	C3	А	XX	Х	Р

Table 31: Two status bytes acquisition

Start	Address byte)	Status byte 1		Status byte 2	:	Stop
S	C3	А	XX	А	XX	Х	Р


13. Test information

13.1 Measurement circuit

The measurement circuit for PAL on a test jig is given in Figure 7 and the components are given in Table 32.

TDA6500; TDA6501

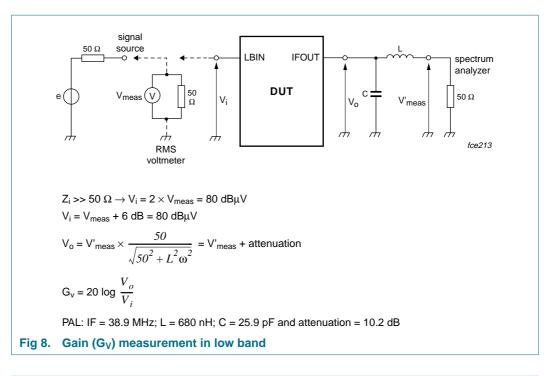
5 V mixer/oscillator and synthesizer for PAL and NTSC standards

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

Table 32: 0	Components for measurement	circuit	
Component	Value	Component	Value
Capacitors;	all SMD and NP0, unless other	wise stated	
C1	1.8 pF (N750)	C15	100 nF
C2	1.5 pF (N750)	C16	820 pF
C3	82 pF (N750)	C17	4.7 nF
C4	1 pF (N750)	C18	4.7 nF
C5	1.5 pF (N750)	C19	4.7 nF
C6	100 pF (N750)	C20	12 pF
C7	1.2 pF (N750)	C21	12 pF
C8	1.2 pF (N750)	C22	160 nF
C9	1.2 pF (N750)	C23	10 nF
C10	1.2 pF (N750)	C25	10 μ F (16 V; electrolytic)
C11	27 pF (N750)	C26	10 µF (16 V; electrolytic)
C12	4.7 nF	C27	22 pF
C13	4.7 nF	C28	3.9 pF
C14	18 pF		
Resistors; a	all SMD		
R1	12 Ω	R12	220 Ω
R2	5.6 Ω	R13	470 Ω
R3	27 Ω	R14	1 kΩ
R4	5.6 kΩ	R15	2.2 kΩ
R5	22 kΩ	R16	0 Ω
R6	22 kΩ	R17	330 Ω
R7	5.6 kΩ	R18	330 Ω
R10	27 kΩ	R19	18 kΩ
R11	1 kΩ	R20	4.7 kΩ
Diodes and	LEDs		
D1	BB182	D4	3 mm
D2	BB178	D5	3 mm
D3	BB179	D6	3 mm
		D7	3 mm
Coils; inclu	ding IF coil; wire size 0.4 mm		
L1	6 t; ∅ 4 mm	L4	2 x 6 t; coil type: TOKO 7kN;
L2	3 t; ∅ 2 mm		material: 113 kN; screw core: 03-0093; pot core: 04-0026
L3	3 t; ∅ 2 mm		00-0030, por core. 04-0020
L5	680 nH		
IC, transisto	or and crystal		
IC	TDA6500TT; TDA6501TT	X1	4 MHz
Q1	BC847		
		1	

13

PCB

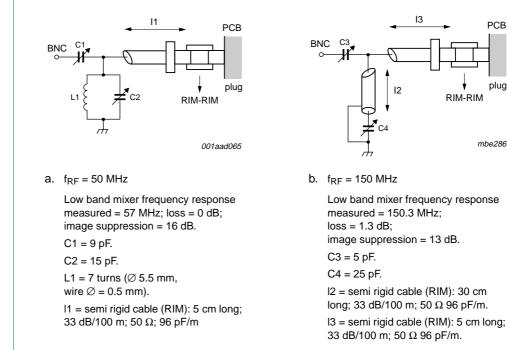
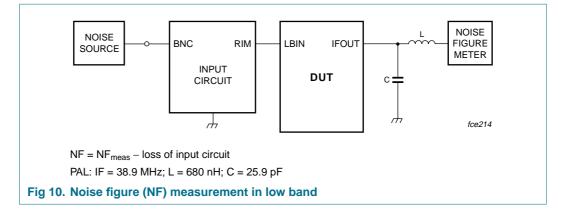
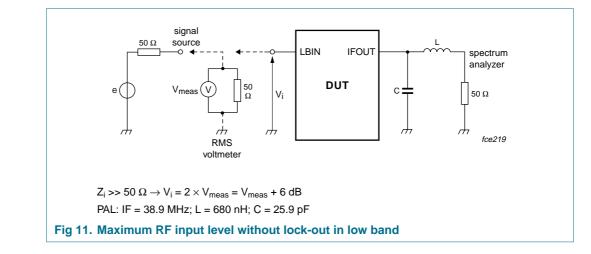

plug

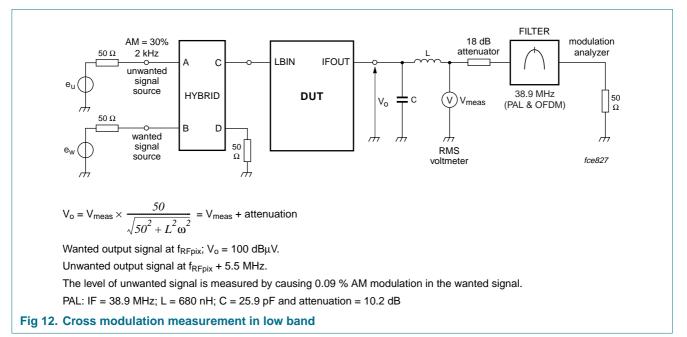
mbe286

RIM-RIM

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

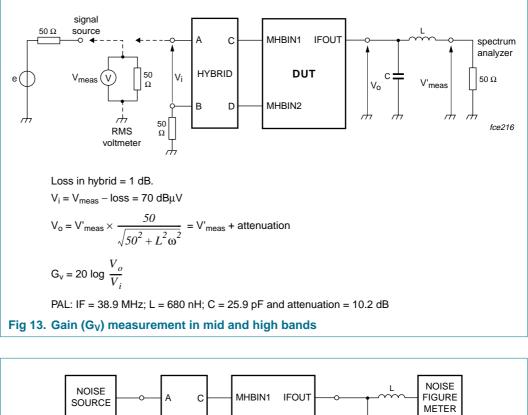
13.2 Test circuit for low band measurements

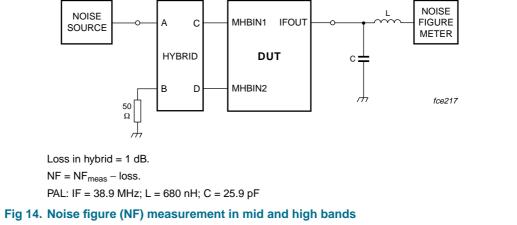





Fig 9. Input circuit for optimum noise figure in the low band

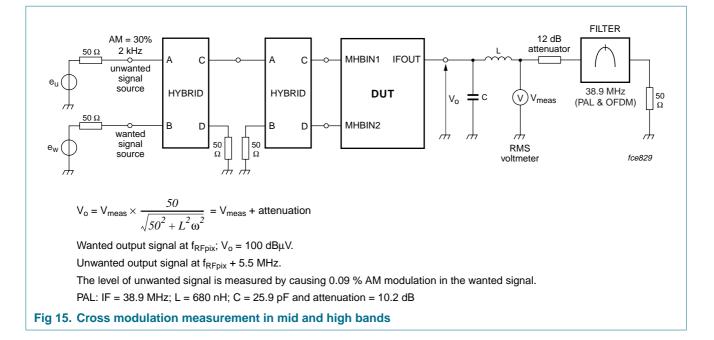
TDA6500; TDA6501

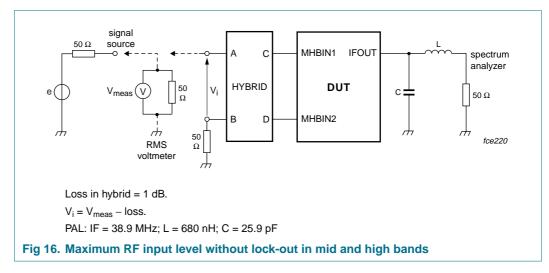
5 V mixer/oscillator and synthesizer for PAL and NTSC standards





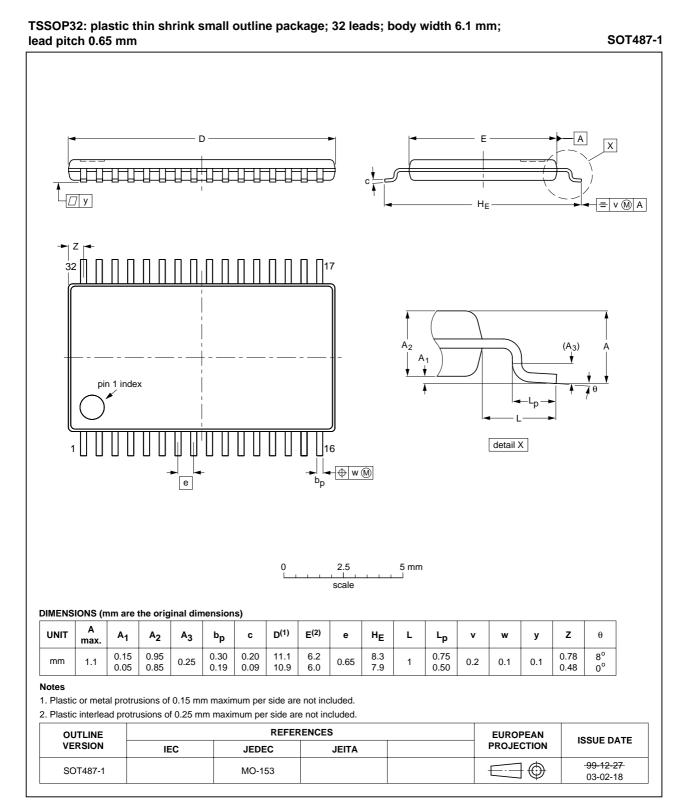
5 V mixer/oscillator and synthesizer for PAL and NTSC standards


13.3 Test circuit for mid and high band measurements



TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards


9397 750 15057 Product data sheet

30 of 37

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

14. Package outline

Fig 17. Package outline SOT487-1 (TSSOP32)

15. Soldering

15.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *Data Handbook IC26; Integrated Circuit Packages* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

15.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 $^{\circ}$ C to 270 $^{\circ}$ C depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below 225 °C (SnPb process) or below 245 °C (Pb-free process)
 - for all BGA, HTSSON..T and SSOP..T packages
 - for packages with a thickness \geq 2.5 mm
 - for packages with a thickness < 2.5 mm and a volume ≥ 350 mm³ so called thick/large packages.
- below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a thickness < 2.5 mm and a volume < 350 mm³ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

15.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;

9397 750 15057

- smaller than 1.27 mm, the footprint longitudinal axis **must** be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between 270 $^\circ C$ and 320 $^\circ C.$

15.5 Package related soldering information

Table 55. Suitability of surface mount is packages for wave and renow soldering methods	Table 33:	Suitability of surface mount IC pac	ckages for wave and reflow soldering methods
---	-----------	-------------------------------------	--

Package [1]	Soldering method		
	Wave	Reflow ^[2]	
BGA, HTSSONT ^[3] , LBGA, LFBGA, SQFP, SSOPT ^[3] , TFBGA, VFBGA, XSON	not suitable	suitable	
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ^[4]	suitable	
PLCC ^[5] , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended [5] [6]	suitable	
SSOP, TSSOP, VSO, VSSOP	not recommended [7]	suitable	
CWQCCNL ^[8] , PMFP ^[9] , WQCCNL ^[8]	not suitable	not suitable	

 For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.

- [2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
- [3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.

- [4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- [5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- [6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- [7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
- [8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.
- [9] Hot bar soldering or manual soldering is suitable for PMFP packages.

34 of 37

16. Revision history

Table 34: Revision his	story					
Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes	
TDA6500_TDA6501_2	20050614	Product data sheet	-	9397 750 15057	TDA6500_TDA6501_1	
Modifications:	 The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors. 					
	 <u>Table 23 "AGC output"</u>: maximum values of V_{max}, V_{RM(H)} and V_{O(off)} changed from 3.6 V to 4.0 V. 					
TDA6500_TDA6501_1	20030605	Product specification	-	9397 750 10109	-	

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

17. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

18. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

19. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

21. Contact information

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

20. Trademarks

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

36 of 37

TDA6500; TDA6501

5 V mixer/oscillator and synthesizer for PAL and NTSC standards

22. Contents

1	General description	. 1
2	Features	. 1
3	Applications	. 2
4	Ordering information	. 2
5	Block diagram	
6	Pinning information	. 4
6.1	Pinning	
6.2	Pin description	
7	Functional description	. 5
7.1	General	. 5
7.2	Device control	. 6
7.2.1	Write mode	
7.2.2	Read mode	-
7.2.3	Power-on reset	
8	Internal circuitry	
9	Limiting values	
10	Thermal characteristics	15
11	Characteristics	16
12	Application information	23
12.1	Tuning amplifier	
12.2	Crystal oscillator	
12.3	Examples of I ² C-bus control	
12.3.1	Write sequence	
12.3.2	Read sequence.	
13	Test information	
13.1	Measurement circuit	
13.2 13.3	Test circuit for low band measurements	27
13.3	Test circuit for mid and high band	29
14	measurements	
14	-	
15.1	Soldering	32
15.1	Introduction to soldering surface mount packages	32
15.2	Reflow soldering	
15.3	Wave soldering	
15.4	Manual soldering	-
15.5	Package related soldering information	
16	Revision history	35
17	Data sheet status	36
18	Definitions	
19	Disclaimers	
20	Trademarks	
21	Contact information	

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 14 June 2005 Document number: 9397 750 15057

Published in The Netherlands